

Nationalpark Berchtesgaden

Flugstaubeintrag und Bodenbildung im Karst der Nördlichen Kalkalpen

Forschungsbericht 54

Flugstaubeintrag und Bodenbildung im Karst der Nördlichen Kalkalpen

Priv.-Doz. Dr. Carola Küfmann

Department für Geographie (Ludwig-Maximilians-Universität München) Lehrstuhl für Geographie und Landschaftsökologie Luisenstr. 37, 80333 München

> Gefördert von der Deutschen Forschungsgemeinschaft

Forschungsbericht 54

Impressum:

Nationalpark Berchtesgaden Forschungsbericht 54/2008

Herausgeber:

Nationalparkverwaltung Berchtesgaden, Doktorberg 6, D-83471 Berchtesgaden, Telefon 0 86 52/96 86-0, Telefax 0 86 52/96 86 40, e-Mail: poststelle@nationalpark-berchtesgaden.de Internet: http://www.nationalpark-berchtesgaden.de im Auftrag des Bayerischen Staatsministeriums für Umwelt, Gesundheit und Verbraucherschutz

Alle Rechte vorbehalten!

ISSN 0172-0023 ISBN 3-922325-61-0 EAN-Code 9783922325611

Druck: Berchtesgadener Anzeiger, Berchtesgaden

Gedruckt auf chlorfrei gebleichtem Papier

Titelbild:

Blick auf die Nordabstürze der Reiteralpe (Berchtesgadener Alpen) Terra fusca-Rendzina aus roter Dachsteinkalk-Brekzie, Reiteralpe (Berchtesgadener Alpen)

> Fotos: Carola Küfmann, Andreas Küfmann

Inhaltsverzeichnis

Flugstaubeintrag und Bodenbildung im Karst der Nördlichen Kalkalpen

	Vorwort
1	Einleitung
1.1	Problemstellung und Motivation
1.2	Stand der Forschung
1.3	Ziele, Themenkomplexe und Fragestellung
1.4	Untersuchungsgebiete
1.4.1	Physiogeographie
2	Methoden und Lage der Messeinrichtungen
2.1	Bodenchemische Analysen 15
2.2	Mineralogische Analysen
2.3	Feldansprache und Beprobung
2.4	Flugstaubmessung
2.4.1	Verwendete Messtechnik 17
2.4.2	Staubuntersuchung auf Schneeoberflächen
2.5	Klimatologische Auswertung
3	Theoretische Grundlagen der äolischen Dynamik im Gebirge 22
3.1	Definitionen
3.2	Das System "Gebirge-Relief-Klima"
3.2.1	Orographische Effekte
3.2.2	Föhnwinde
3.3	Saharastaub-Ereignisse
4	Das Bodeninventar und seine äolische Beeinflussung
4.1	Ergebnisse der Feldbodenkunde 26
4.1.1	Ausgangsgestein
4.1.2	Solummächtigkeiten
4.1.3	Bodenfarbe
4.1.4	Relief und Vegetation
4.2	Ergebnisse der Staubuntersuchungen (Eigenschaften)
4.2.1	Lichtmikroskopie
4.2.2	Mineralanalysen
4,2.3	Chemische Analyse der Feinfraktion
4.2.4	Korngrößenverteilung
4.3	Ergebnisse der Analysen von rezent-äolisch beeinflussten Böden 37
4.3.1	Autochthone Böden - Zugspitzplatt
4.3.2	Autochthone Böden - Westliche Karwendelgrube
4.3.3	Autochthone Böden - Ostliche Karwendelgrube
4.3.4	Autochthone Böden - Reiteralpe
4.3.5	Mineralogische Indikatoren für rezenten Staubeintrag
4.4	Ergebnisse der Analysen von nicht-rezent äolischen Böden
4.4.1	Äolische Deckschichten
4.4.2	Allochthone Böden - Zugspitzplatt
4.4.3	Allochthone Böden - Westliche Karwendelgrube
4.4.4	Allochthone Böden - Reiteralpe
4.4.5	Mineralogische Indikatoren für äolische Substratherkunft
4.5	Zusammenfassung wichtiger Aspekte der Bodenbildung
4.5.1	Die autochthonen Böden 69
4.5.2	Die allochthonen Böden

5 Flugstaubquantifizierung und äolische Dynamik 5.1 Ergebnisse zur Staubquantifizierung auf Schneeoberflächen 5.1.2 Staubeintrag - Schneedeckenaubbau 5.1.3 Jahreszeitlicher Vergleich der Staubeinträge 5.1.4 Verlässlichkeit der Probennahme (Schneedeckenabbau) 5.1.5 Staubeintrag zus Neuschnee 5.1.6 Ausgewählte Witterungsverläufe 5.2 Ergebnisse zur Staubquantifizierung im Regenniederschlag 5.2.1 Quantifizierung des Staubeinträgs 5.2.2 Abhängigkeit von Klimaparametern 5.3.1 Ergebnisse zum Einfluss von Relief und Vegetation 5.3.1 Ergebnisse zum Einfluss von Relief und Vegetation 5.3.2 Effekte auf Boden und Vegetation durch Staubeintrag 5.4 Zusammenfassung; Åolische Dynamik 6.4.1 Die Staubquantifizierung im Sommer 5.4.2 Die Staubquantifizierung im Sommer 5.5.3 Berechnungsgrundlagen 6.5.4 Berechnungsgrundlagen 6.5.5 Berechnungsgrundlagen 6.6 Diskussion und Bewertung 6.7 Zusammenfassung 7 Zusammenfassung 8 Danksagung		
5.1 Ergebnisse zur Staubquantifizierung auf Schneedeberflächen	5	Flugstaubquantifizierung und äolische Dynamik
6.1.1 Staubeintrag - Schneedeckenaufbau 6.1.2 Staubeintrag - Schneedeckenaufbau 6.1.3 Jahreszetilicher Vergleich der Staubeinträge 5.1.4 Verlässlichkeit der Probennahme (Schneedeckenabbau) 5.1.5 Staubeintrag aus Neuschnee 5.1.6 Ausgewählte Witterungsverläufe 5.2.1 Cuantifizierung des Staubeintrags 5.2.2 Abhängigkeit von Kilmaparametern 5.3 Ergebnisse zum Einfluss von Relief und Vegetation 5.3.1 Relief und Luv-Lee-Effekte 5.3.2 Effekte auf Boden und Vegetation durch Staubeintrag 5.4 Zusammenfassung: Äolische Dynamik 5.4.1 Die Staubquantifizierung im Winter 5.4.2 Die Staubquantifizierung im Sommer 5.4.3 Mögliche Liefergebiete 5.5 Berechnung von Sedimentationsraten 5.5.1 Berechnungsgrundlagen 5.5.2 Sedimentationsraten und Solummächtigkeiten 6 Diskussion und Bewertung 6.1 Bewertung der Ergebnisse zur Staubquantifizierung 7 Zusammenfassung 8 Danksagung 9 Literaturverzeichnis 10 <td>5.1</td> <td>Ergebnisse zur Staubquantifizierung auf Schneeoberflächen 73</td>	5.1	Ergebnisse zur Staubquantifizierung auf Schneeoberflächen 73
5.1.2 Staubeintrag - Schneedeckenabbau 5.1.3 Jahreszeitlicher Vergleich der Staubeinträge 5.1.4 Verlässlichkeit der Probennahme (Schneedeckenabbau) 5.1.5 Staubeintrag aus Neuschnee 5.1.6 Ausgewählte Witterungsverläufe 5.2 Ergebnisse zur Staubejunträgs 5.2.1 Quantifizierung des Staubeinträgs 5.2.2 Abhängigkeit von Kilmaparametern 5.3 Ergebnisse zum Einfluss von Relief und Vegetation 5.3.1 Relief und Luv-Lee-Effekte 5.3.2 Effekte auf Boden und Vegetation durch Staubeinträg 5.4 Zusammenfassung: Äolische Dynamik 5.4.1 Die Staubquantifizierung im Winter 5.4.2 Die Staubquantifizierung im Sommer 5.4.3 Mögliche Liefergebiete 5.5 Berechnung von Sedimentationsraten 5.5.1 Berechnung segnundlagen 5.5.3 Sedimentationsraten und Solummächtigkeiten 6 Diskussion und Bewertung 6.1 Bewertung der Ergebnisse zum Bodeninventar 6.2 Bewertung und Catenen - Zugspitzpiatt Karte K 1: Messeinrichtung und Catenen - Zugspitzpiatt Karte K 1: Messeinrichtung und Gatenen - Westliche Karwendeigruben Karte K 1: Messeinrichtung	5.1.1	Staubeintrag - Schneedeckenaufbau.
5.1.3 Jahreszetilicher Vergleich der Staubeinträge 5.1.4 Verlässlichkeit der Probennahme (Schneedeckenabbau) 5.1.5 Staubeintrag aus Neuschnee 5.1.6 Ausgewählte Witterungsverläufe 5.2 Ergebnisse zur Staubeintrags 5.2.1 Quantifizierung des Staubeintrags 5.2.2 Abhängigkeit von Kilmaparametern 5.3 Ergebnisse zum Einfluss von Relief und Vegetation 5.3.1 Relief und Luv-Lee-Effekte 5.3.2 Effekte auf Boden und Vegetation durch Staubeintrag 5.4 Zusammenfassung: Äolische Dynamik 5.4.1 Die Staubquantifizierung im Sommer 5.4.2 Die Staubquantifizierung im Sommer 5.4.3 Mögliche Liefergebiete 5.5 Berechnung von Sedimentationsraten 5.5.1 Berechnungsgrundlagen 5.5.2 Sedimentationsraten und Solummächtigkeiten 6 Diskussion und Bewertung 6.1 Bewertung der Ergebnisse zur Staubquantifizierung 7 Zusammenfassung 8 Danksagung 9 Literaturverzeichnis 10.1 Lage der Messeinrichtung und Catenen - Zugspitzpiatt Karte K 1: Messeinrichtung u	512	Staubeintrag - Schneedeckenabbau 75
5.1.3 Variasslichkeit der Pröbennahme (Schneedeckenabbau) 5.1.5 Staubeintrag aus Neuschnee 5.1.6 Ausgewählte Witterungsverläufe 5.2 Ergebnisse zur Staubquantifizierung im Regenniederschlag 5.2.1 Quantifizierung des Staubeintrags 5.2.2 Abhängigkeit von Klimaparametern 5.3 Ergebnisse zum Einfluss von Relief und Vegetation 5.3.1 Relief und Luv-Lee-Effekte 5.3.2 Effekte auf Boden und Vegetation durch Staubeintrag 5.4 Zusammenfassung: Äolische Dynamik 5.4.1 Die Staubquantifizierung im Winter 5.4.2 Die Staubquantifizierung im Sommer 5.4.3 Mögliche Liefergebiete 5.5 Berechnungsgrundlagen 5.5.1 Berechnungsgrundlagen 5.5.3 Sedimentationsraten im Winter und Sommer 5.5.4 Sedimentationsraten und Solummächtigkeiten 6 Diskussion und Bewertung 6.1 Bewertung der Ergebnisse zur Staubquantifizierung 7 Zusammenfassung 8 Danksagung 9 Literaturverzeichnis 10 Anhang 11.1 Lage der Me	519	Jabreszeitlicher Vergleich der Staubeintröge
5.1.5 Staubeintrag aus Neuschnee 5.1.6 Ausgewählte Witterungsverläufe 5.2 Ergebnisse zur Staubquantifizierung im Regenniederschlag 5.2.1 Quantifizierung des Staubeintrags 5.2.2 Abhängigkeit von Klimaparametern 5.3 Ergebnisse zum Einfluss von Relief und Vegetation 5.3.1 Relief und Luv-Lee-Effekte 5.3.2 Effekte auf Boden und Vegetation durch Staubeintrag 5.4.4 Zusammenfassung: Äolische Dynamik 5.4.2 Die Staubquantifizierung im Winter 5.4.3 Mögliche Liefergebiete 5.4.3 Mögliche Liefergebiete 5.5.1 Berechnungsgrundlagen 5.5.2 Sedimentationsraten und Solummächtigkeiten 6 Diskussion und Bewertung 6.1 Bewertung der Ergebnisse zum Bodeninventar 6.2 Bewertung der Ergebnisse zur Staubquantifizierung 7 Zusammenfassung 8 Danksagung 9 Literaturverzeichnis 10.1 Lage der Messeinrichtung und Gatenen - Zugepitzpiatt Karte K1: Messeinrichtung und Gatenen - Zugepitzpiatt Karte K2: Messeinrichtung und Gatenen - Karwandeigruben Karte K4: Messeinrichtung und Gatenen - Zugepitzpiatt Mittlere Komgrößenverteilung - Böden Ravendei	510	Varlägglighkeit der Brahannahme (Schnandagkanshhau)
5.1.5 Staubenintrag aus Neusschnee 5.1.6 Ausgewählte Witterungsverläufe 5.2 Ergebnisse zur Staubquantifizierung im Regenniederschlag 5.2.1 Quantifizierung des Staubeintrags 5.2.2 Abhängigkeit von Klimaparametern 5.3 Ergebnisse zum Einfluss von Relief und Vegetation 5.3.1 Relief und Luv-Lee-Effekte 5.3.2 Effekte auf Boden und Vegetation durch Staubeintrag 5.4 Zusammenfassung: Äolische Dynamik 5.4.1 Die Staubquantifizierung im Winter 5.4.2 Die Staubquantifizierung im Sommer 5.4.3 Mögliche Liefergebiete 5.5 Berechnung von Sedimentationsraten 5.5.1 Berechnung von Sedimentationsraten 5.5.3 Sedimentationsraten und Solummächtigkeiten 6 Diskussion und Bewertung 6.1 Bewertung der Ergebnisse zur Staubquantifizierung 7 Zusammenfassung 8 Danksagung 9 Literaturverzeichnis 10.1 Lage der Messeinrichtung und Catenen - Zugepitzpiatt Karte K 1: Messeinrichtung und Catenen - Zugepitzpiatt Karte K 2: Messeinrichtung und Catenen - Zugepitzpiatt Karte K 3: Messeinrichtung und Catenen - Reiteraipe	0,1,4	Oberhalssichkeit der Probenhanme (Schneedeckenabbau)
5.1.6 Ausgewahlte Witterungsverlaufe 5.2 Ergebnisse zur Staubquantifizierung im Regenniederschlag 5.2.1 Quantifizierung des Staubeintrags 5.2.2 Abhängigkeit von Klimaparametern 5.3 Ergebnisse zum Einfluss von Relief und Vegetation 5.3.1 Relief und Luv-Lee-Effekte 5.3.2 Effekte auf Boden und Vegetation durch Staubeintrag 5.4 Zusammenfassung; Äolische Dynamik 5.4.1 Die Staubquantifizierung im Winter 5.4.2 Die Staubquantifizierung im Sommer 5.4.3 Mögliche Liefergebiete 5.5 Berechnungsgrundlagen 5.5.2 Sedimentationsraten und Solummächtigkeiten 6 Diskussion und Bewertung 6.1 Bewertung der Ergebnisse zum Bodeninventar 6.2 Bewertung der Ergebnisse zum Bodeninventar 6.3 Danksagung 7 Zusammenfassung 8 Danksagung 9 Literaturverzeichnis 10.1 Lage der Messeinrichtung und Catenen - Zugepitzpiatt Karte K 2: Messeinrichtung und Catenen - Westliche Karwendelgrube Karte K 3: Messeinrichtung und Catenen - Westliche Karwendelgrube Karte K 4: Messeinrichtung und Catenen - Nestlicher Karwendelgrube Karte K 4: Messeinrichtung	5.1.5	Staubeintrag aus Neuschnee
 5.2 Ergebnisse zur Staubquantifizierung im Regenniederschlag	5.1.6	Ausgewählte Witterungsverläufe
5.2.1 Quantifizierung des Staubeintrags 5.2.2 Abhängigkeit von Klimaparametern 5.3 Ergebnisse zum Einfluss von Relief und Vegetation 5.3.1 Relief und Luv-Lee-Effekte 5.3.2 Effekte auf Boden und Vegetation durch Staubeintrag 5.4 Zusammenfassung; Äolische Dynamik 5.4.1 Die Staubquantifizierung im Winter 5.4.2 Die Staubquantifizierung im Sommer 5.4.3 Mögliche Liefergebiete 5.5 Berechnungsgrundlagen 5.5.1 Berechnungsgrundlagen 5.5.2 Sedimentationsraten im Winter und Sommer 5.5.3 Sedimentationsraten und Solummächtigkeiten 6 Diskussion und Bewertung 6.1 Bewertung der Ergebnisse zum Bodeninventar 6.2 Bewertung der Ergebnisse zum Staubquantifizierung 7 Zusammenfassung 8 Danksagung 9 Literaturverzeichnis 10 Anhang 10.1 Lage der Messeinrichtung und Catenen - Zugepitzplatt Karte K 1: Messeinrichtung und Catenen - Zugepitzplatt Karte K 2: Messeinrichtung und Bedenprofile Karwendelgrube Karte K 3: Messeinrichtung und Bedenprofile 10.4 Korngrößenverteilung - Böden Zugepi	52	Fraebnisse zur Staubouantifizierung im Begenniederschlag
5.2.1 Odamizierung uns Stablemitags 5.2.2 Abhängigkeit von Klimaparametern 5.3 Ergebnisse zum Einfluss von Relief und Vegetation 5.3.1 Relief und Luv-Lee-Effekte 5.3.2 Effekte auf Boden und Vegetation durch Staubeintrag 5.4 Zusammenfassung: Äolische Dynamik 5.4.1 Die Staubquantifizierung im Winter 5.4.2 Die Staubquantifizierung im Sommer 5.4.3 Mögliche Liefergebiete 5.5 Berechnungsgrundlagen 5.5.1 Berechnungsgrundlagen 5.5.2 Sedimentationsraten und Solummächtigkeiten 6 Diskussion und Bewertung 6.1 Bewertung der Ergebnisse zum Bodeninventar 6.2 Bewertung der Ergebnisse zum Bodeninventar 6.3 Baksagung 7 Zusammenfassung 8 Danksagung 9 Literaturverzeichnis 10.1 Lage der Messeinrichtung und Catenen - Zugspitzplatt Karte K 2: Messeinrichtung und Catenen - Zugspitzplatt Marte K 3: Messeinrichtung und Catenen - Reiteralpe 10.2 Bodenprofile und Kenndaten Referenzprofile Zugspitzplatt (ZP. 17 bis 19: ZP. 29) Bodenprofile Reiteralpe (RA. 1 bis RA. 14) <	501	Quantifiziarung das Staubaintrags
5.2.2 Abhanggken von Knintaparametern 5.3 Ergebnisse zum Einfluss von Relief und Vegetation 5.3.1 Relief und Luv-Lee-Effekte 5.3.2 Effekte auf Boden und Vegetation durch Staubeintrag 5.4 Zusammenfassung: Åolische Dynamik 5.4.1 Die Staubquantifizierung im Winter 5.4.2 Die Staubquantifizierung im Sommer 5.4.3 Mögliche Liefergebiete 5.4 Berechnung von Sedimentationsraten 5.5.1 Berechnungsgrundlagen 5.5.2 Sedimentationsraten und Solummächtigkeiten 6 Diskussion und Bewertung 6.1 Bewertung der Ergebnisse zum Bodeninventar 6.2 Bewertung der Ergebnisse zur Staubquantifizierung 7 Zusammenfassung 8 Danksagung 9 Literaturverzeichnis 10 Anhang 10.1 Lage der Messeinrichtung und Catenen - Zugspitzplätt Karte K 1: Messeinrichtung und Catenen - Zugspitzplätt Karte K 2: Messeinrichtung und Catenen - Westliche Karvendeigrube Karte K 4: Messeinrichtung und Catenen - Reiteralpe 10.2 Bodenprofile und Kenndaten Referenzprofile Zugspitzplätt (ZP: 17 bis 19: 2P. 29) Bodenprofile Reiteralpe (RA_1 bis RA_14) 10.	5.2.1	Abhängigkeit von Klimeneremetern
 5.3 Ergebnisse zum Einfluss von Relief und Vegetation	0.2.2	Abhangigkeit von Kilmaparametern sammannan oz
 5.3.1 Relief und Luv-Lee-Effekte	5.3	Ergebnisse zum Einfluss von Relief und Vegetation
 5.3.2 Effekte auf Boden und Vegetation durch Staubeintrag 5.4 Zusammenfassung: Äolische Dynamik 5.4.1 Die Staubquantifizierung im Winter 5.4.2 Die Staubquantifizierung im Sommer 5.4.3 Mögliche Liefergebiete 5.5 Berechnung von Sedimentationsraten 5.5.1 Berechnungsgrundlagen 5.5.2 Sedimentationsraten im Winter und Sommer 5.5.3 Sedimentationsraten und Solummächtigkeiten 6 Diskussion und Bewertung 6.1 Bewertung der Ergebnisse zum Bodeninventar 6.2 Bewertung der Ergebnisse zur Staubquantifizierung 7 Zusammenfassung 8 Danksagung 9 Literaturverzeichnis 10 Anhang 10.1 Lage der Messeinrichtung und Catenen - Zugspitzpiatt Karte K 1: Messeinrichtung und Catenen - Reiteralpe 10.2 Bodenprofile und Kenndaten Referenzprofile Zugspitzpitatt (ZP, 17 bis 19; ZP _29) Bodenprofile Reiteralpe (RA_1 bis RA_14) 10.3 Korngrößendaten - Böden Zugspitzpiatt Mittlere Komgrößenverteilung - Böden Reiteralpe 10.4 Korngrößendaten - Böden Zugspitzpiatt Mittlere Komgrößenverteilung - Böden Reiteralpe 10.4 Korngrößendaten - Staub Mittlere Komgrößenverteilung - Böden Reiteralpe 10.4 Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 o Mittlere Komgrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 o Mittlere Komgrößenverteilung - Staub van Schneeflächen (Horizonttiefe: 0 cm-1 o Mittlere Komgrößenverteilung - Staub van Schneeflächen (Horizonttiefe: 0 cm-1 o Mittlere Komgrößenverteilung - Staub van Schneeflächen (Horizonttiefe: 0 cm-1 o Mittlere Komgrößenverteilung - Staub van Schneeflächen (Horizonttiefe: 0 cm-1 o Mittlere Komgrößenverteilung - Staub van Schneeflächen (Horizonttiefe: 0 cm-1 o Mittlere Komgrößenverteilung - Staub van Schneeflächen (Horizonttiefe: 0 cm-1 o Mittlere Komgrößenverteilung - Staub van Schneeflächen (Horizonttiefe: 0 cm-1 o Mittlere Komgrößenverteilung - Staub van Schneeflächen	5.3.1	Relief und Luv-Lee-Effekte
 5.4 Zusammenfassung: Äolische Dynamik	5.3.2	Effekte auf Boden und Vegetation durch Staubeintrag
 5.4 Zusammenfassung: Äolische Dynamik		
 5.4.1 Die Staubquantifizierung im Winter	5.4	Zusammenfassung: Äolische Dynamik
 5.4.2 Die Staubquantifizierung im Sommer	5.4.1	Die Staubquantifizierung im Winter
 5.4.3 Mögliche Liefergebiete 5.5 Berechnung von Sedimentationsraten 5.5.1 Berechnungsgrundlagen 5.5.2 Sedimentationsraten im Winter und Sommer 5.5.3 Sedimentationsraten und Solummächtigkeiten 6 Diskussion und Bewertung 6.1 Bewertung der Ergebnisse zum Bodeninventar 6.2 Bewertung der Ergebnisse zur Staubquantifizierung 7 Zusammenfassung 8 Danksagung 9 Literaturverzeichnis 10 Anhang 10.1 Lage der Messeinrichtung und Catenen - Zugspitzplatt Karte K 1: Messeinrichtung und Catenen - Zugspitzplatt Karte K 2: Messeinrichtung und Catenen - Zugspitzplatt Karte K 3: Messeinrichtung und Catenen - Vestliche Karwendelgrube Karte K 3: Messeinrichtung und Catenen - Vestliche Karwendelgrube Karte K 4: Messeinrichtung und Catenen - Vestliche Karwendelgrube Karte K 4: Messeinrichtung und Catenen - Vestliche Karwendelgrube Karte K 4: Messeinrichtung und Catenen - Vestliche Karwendelgrube Karte K 4: Messeinrichtung und Catenen - Vestliche Karwendelgrube Karte K 4: Messeinrichtung und Catenen - Vestliche Karwendelgrube Korngrößendaten - Böden Mittlere Korngrößenverteilung - Böden Zugspitzplatt Mittlere Korngrößenverteilung - Böden Zugspitzplatt Mittlere Korngrößenverteilung - Böden Zugspitzplatt Mittlere Korngrößenverteilung - Böden Raivendelgruben Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub aus Regenniederschlag (Auswahi) 10.5 Analysedaten - Gestein/Residuen 10.6 Staubquantifizierung Summen und Mittleverte - Klimadaten 	5.4.2	Die Staubquantifizierung im Sommer
 5.5 Berechnung von Sedimentationsraten 5.5.1 Berechnungsgrundlagen 5.5.2 Sedimentationsraten im Winter und Sommer 5.5.3 Sedimentationsraten und Solummächtigkeiten 6 Diskussion und Bewertung 6.1 Bewertung der Ergebnisse zum Bodeninventar 6.2 Bewertung der Ergebnisse zur Staubquantifizierung 7 Zusammenfassung 8 Danksagung 9 Literaturverzeichnis 10 Anhang 10.1 Lage der Messeinrichtung und Catenen - Zugspitzpiatt Karte K 1: Messeinrichtung und Catenen - Zugspitzpiatt Karte K 1: Messeinrichtung und Catenen - Zugspitzpiatt Karte K 3: Messeinrichtung und Catenen - Zugspitzpiatt Karte K 4: Messeinrichtung und Catenen - Vestliche Karwendelgrube Karte K 4: Messeinrichtung und Catenen - Reiteralpe 10.2 Bodenprofile und Kenndaten Referenzprofile Zugspitzpiatt (ZP, 17 bis 19; ZP, 29) Bodenprofile Reiteralpe (RA_1 bis RA_14) 10.3 Korngrößendaten - Böden Mittlere Korngrößenverteilung - Böden Raivendelgruben Mittlere Korngrößenverteilung - Böden Raivendelgruben Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub vo	5.4.3	Mögliche Liefergebiete
 5.5 Berechnung von Sedimentationsraten		
 5.5.1 Berechnungsgrundlagen	5.5	Berechnung von Sedimentationsraten
 5.5.2 Sedimentationsraten im Winter und Sommer	5.5.1	Berechnungsgrundlagen
 5.5.3 Sedimentationsraten und Solummächtigkeiten	5.5.2	Sedimentationsraten im Winter und Sommer
 6 Diskussion und Bewertung	5.5.3	Sedimentationsraten und Solummächtigkeiten
 6 Diskussion und Bewertung		
 6.1 Bewertung der Ergebnisse zum Bodeninventar	6	Diskussion und Bewertung91
 6.2 Bewertung der Ergebnisse zur Staubquantifizierung	6.1	Bewertung der Ergebnisse zum Bodeninventar
 7 Zusammenfassung 8 Danksagung 9 Literaturverzeichnis 10 Anhang 10.1 Lage der Messeinrichtungen 10.1 Lage der Messeinrichtung und Catenen - Zugspitzplatt Karte K 1: Messeinrichtung und Catenen - Westliche Karwendelgrube Karte K 2: Messeinrichtung und Catenen - Westliche Karwendelgrube Karte K 3: Messeinrichtung und Catenen - Reiteralpe 10.2 Bodenprofile und Kenndaten Referenzprofile Zugspitzplatt (ZP_17 bis 19; ZP_29) Bodenprofile Reiteralpe (RA_1 bis RA_14) 10.3 Korngrößendaten - Böden Mittlere Korngrößenverteilung - Böden Zugspitzplatt Mittlere Korngrößenverteilung - Böden Reiteralpe 10.4 Korngrößendaten - Staub Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mitt	6.2	Bewertung der Ergebnisse zur Staubquantifizierung
 2. 2. Sammermassung 8 Danksagung 9 Literaturverzeichnis 10 Anhang 10.1 Lage der Messeinrichtungen Karte K 1: Messeinrichtung und Catenen - Zugspitzplatt Karte K 2: Messeinrichtung und Catenen - Westliche Karwendelgrube Karte K 3: Messeinrichtung und Catenen - Westliche Karwendelgrube Karte K 4: Messeinrichtung und Catenen - Reiteralpe 10.2 Bodenprofile und Kenndaten Referenzprofile Zugspitzplatt (ZP_17 bis 19; ZP_29) Bodenprofile Reiteralpe (RA_1 bis RA_14) 10.3 Korngrößendaten - Böden Mittlere Korngrößenverteilung - Böden Zugspitzplatt Mittlere Korngrößenverteilung - Böden Reiteralpe 10.4 Korngrößendaten - Staub Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub aus Regenniederschlag (Auswahi) 10.5 Analysedaten - Gestein/Residuen 10.6 Staubquantifizierung Summer und Mittlerwerte - Klimadaten 	-	2
 8 Danksagung 9 Literaturverzeichnis 10 Anhang 10.1 Lage der Messeinrichtungen Karte K 1: Messeinrichtung und Catenen - Zugspitzpiatt Karte K 2: Messeinrichtung und Catenen - Westliche Karwendelgrube Karte K 3: Messeinrichtung und Bodenprofile - Karwendelgrube Karte K 4: Messeinrichtung und Catenen - Reiteralpe 10.2 Bodenprofile und Kenndaten Referenzprofile Zugspitzplatt (ZP_17 bis 19; ZP_29) Bodenprofile Reiteralpe (RA_1 bis RA_14) 10.3 Korngrößendaten - Böden Mittlere Korngrößenverteilung - Böden Zugspitzplatt Mittlere Korngrößenverteilung - Böden Rarwendelgruben Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub aus Regenniederschlag (Auswahl) 10.5 Analysedaten - Gestein/Residuen 10.6 Staubquantifizierung Summen und Mittelwerte - Klimadaten Summen und Mittelwerte - Klimadaten 	4	zusammentassung
 9 Literaturverzeichnis	8	Danksagung
 9 Literaturverzeichnis 10 Anhang 10.1 Lage der Messeinrichtungen Karte K 1: Messeinrichtung und Catenen - Zugspitzplatt Karte K 2: Messeinrichtung und Catenen - Westliche Karwendelgrube Karte K 3: Messeinrichtung und Catenen - Westliche Karwendelgrube Karte K 4: Messeinrichtung und Catenen - Reiteralpe 10.2 Bodenprofile und Kenndaten Referenzprofile Zugspitzplatt (ZP_17 bis 19; ZP_29) Bodenprofile Reiteralpe (RA_1 bis RA_14) 10.3 Korngrößendaten - Böden Mittlere Korngrößenverteilung - Böden Zugspitzplatt Mittlere Korngrößenverteilung - Böden Reiteralpe 10.4 Korngrößendaten - Staub Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 cm) Mittlere Korngrößenverteilung - Staub aus Regenniederschlag (Auswahl) 10.5 Analysedaten - Gestein/Residuen 10.6 Staubquantifizierung Summen und Mittelwerte - Klimadaten 		
 Anhang Lage der Messeinrichtungen Karte K 1: Messeinrichtung und Catenen - Zugspitzplatt Karte K 2: Messeinrichtung und Catenen - Westliche Karwendelgrube Karte K 3: Messeinrichtung und Bodenprofile - Karwendelgruben Karte K 4: Messeinrichtung und Catenen - Reiteralpe 10.2 Bodenprofile und Kenndaten Referenzprofile Zugspitzplatt (ZP_17 bis 19; ZP_29) Bodenprofile Reiteralpe (RA_1 bis RA_14) 10.3 Korngrößendaten - Böden Mittlere Korngrößenverteilung - Böden Zugspitzplatt Mittlere Korngrößenverteilung - Böden Reiteralpe 10.4 Korngrößendaten - Staub Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub aus Regenniederschlag (Auswahi) 10.5 Analysedaten - Gestein/Residuen 10.6 Staubquantifizierung	9	Literaturverzeichnis
 10 Annang 10.1 Lage der Messeinrichtungen	10	Anhone 107
 10.1 Lage der Messennichtungen	10.4	Annang
 Karte K 1: Messeinrichtung und Cateren - 20gspitzplatt Karte K 2: Messeinrichtung und Cateren - Westliche Karwendelgrube Karte K 3: Messeinrichtung und Cateren - Reiteralpe 10.2 Bodenprofile und Kenndaten	10.1	Lage der Messeinrichtung und Ostanen Zugenitzticht
 Karte K 3: Messeinrichtung und Bodenprofile - Karwendelgruben Karte K 4: Messeinrichtung und Catenen - Reiteralpe 10.2 Bodenprofile und Kenndaten		Narte N 1; Wesseinrichtung und Gatenen - Zugspitzplatt Karte K 2; Messeinrichtung und Catenen - Westliche Kerwendelgrube
 Karte K 4: Messeinrichtung und Catenen - Reiteralpe 10.2 Bodenprofile und Kenndaten		Karte K 3; Messeinrichtung und Bodenprofile - Karwendelgruben
 10.2 Bodenprofile und Kenndaten		Karte K 4: Messeinrichtung und Catenen - Reiteralpe
 Referenzprofile Zugspitzplatt (ZP_17 bis 19; ZP_29) Bodenprofile Reiteralpe (RA_1 bis RA_14) 10.3 Korngrößendaten - Böden	10.2	Bodenprofile und Kenndaten 100
 Bodenprofile Reiteralpe (RA_1 bis RA_14) 10.3 Korngrößendaten - Böden	10.2	Referenzprofile Zugspitzplatt (ZP_17 bis 19: ZP_29)
 10.3 Korngrößendaten - Böden		Bodenprofile Reiteralpe (RA_1 bis RA_14)
 10.3 Korngrößenverteilung - Böden Zugspitzplatt Mittlere Korngrößenverteilung - Böden Zugspitzplatt Mittlere Korngrößenverteilung - Böden Reiteralpe 10.4 Korngrößendaten - Staub	10.2	Korngrößendaten - Röden
 Mittlere Korngrößenverteilung - Böden Karwendelgruben Mittlere Korngrößenverteilung - Böden Reiteralpe 10.4 Korngrößendaten - Staub	10.5	Mittlere Komarößenverteilung - Böden Zugenitzplatt
 Mittlere Korngrößenverteilung - Böden Reiteralpe 10.4 Korngrößendaten - Staub		Mittlere Kongrobenverteilung - Böden Karwendelaruben
 10.4 Korngrößendaten - Staub		Mittlere Korngrößenverteilung - Böden Reiteralpe
 10.4 Normgrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 of Mittlere Korngrößenverteilung - Staub aus Regenniederschlag (Auswahl) 10.5 Analysedaten - Gestein/Residuen	10.4	Korngrößendaten - Staub
10.5 Analysedaten - Gestein/Residuen 10.6 Staubquantifizierung Summen und Mittelwerte - Klimadaten Summen und Mittelwerte - Klimadaten	10.4	Mittlere Korngrößenverteilung - Staub von Schneeflächen (Horizonttiefe: 0 cm-1 cm)
 10.5 Analysedaten - Gestein/Residuen 10.6 Staubquantifizierung		Mittlere Korngrößenverteilung - Staub aus Regenniederschlag (Auswahl)
10.5 Analysedaten - Gestein/Residuen 10.6 Staubquantifizierung Summen und Mittelwerte - Klimadaten Staub aus Bezerninderen klimadaten	Gel. 1.	
10.6 Staubquantifizierung	10.5	Analysedaten - Gestein/Residuen
Summen und Mittelwerte - Klimadaten	10.6	Staubquantifizierung
Staub and Decempined and Man Common 2000	1010	Summen und Mittelwerte - Klimadaten
Staub aus Regenniederschlag - Sommer 2002		Staub aus Regenniederschlag - Sommer 2002
Staub aus Regenniederschlag - Sommer 2003		Staub aus Regenniederschlag - Sommer 2003

Vorwort

Sie halten unseren Forschungsbericht "Flugstaubeintrag und Bodenbildung im Karst der Nördlichen Kalkalpen" in Händen. Was ist der Hintergrund dieses mehrjährigen Forschungsprojektes, das Frau Dr. Carola Küfmann am Zugspitzplatt, in der Karwendelgrube und vor allem auf der Reiteralpe im Nationalpark Berchtesgaden durchgeführt hat?

Neben dem Schutz der Natur, mit dem Ziel sie so zu belassen wie sie ist, sind Forschung und Beobachtung der Natur weitere wichtige Aufgaben und Zweckbestimmung eines Nationalparks. Bei der Erfassung der Böden im Nationalpark war an bestimmten Stellen sehr auffällig, dass bei der Entwicklung der braunen Mineralböden im Oberboden Glimmer und andere Fremdminerale nachweisbar waren - so zum Beispiel auf der Reiteralpe. Ein sicheres Zeichen für das Vorhandensein von Staubeinträgen. Diese Deposition wird erstmals systematisch erfasst, wobei Stäube aus Niederschlag (Sommer) und auf Schneeoberflächen (Winter) quantifiziert werden. Neu an den Untersuchungen ist auch die Anpassung der Messintervalle an Witterungsverläufe und Großwetterlagen. Die Auswertung von Wind- und Niederschlagssituation soll meteorologische Einflüsse auf den Staubeintrag (z.B. Menge, Herkunft) zeigen. Wichtige Ziele der Arbeit sind das Verständnis der äolischen Dynamik und die Wirkungsweise von Flugstäuben im Karstökosystem.

Eine derart detaillierte Untersuchung dieser äolischen Substrate im Karst der Nördlichen Kalkalpen wurde bisher nicht durchgeführt. Wir wissen nun genau, warum der Substrattyp "Äolium-Kolluvium" in der Standortkarte des Nationalparks Berchtesgaden ausgewiesen ist. Der Ursprung der Flugstäube ist größtenteils die Sahara. Insgesamt gelangen jährlich weltweit rund fünf Milliarden Tonnen Stauboder Aerosolpartikel in die Atmosphäre. Der Mineralstaub aus den Wüsten hat davon einen Anteil von 1,5 Milliarden Tonnen. Davon entstammen 60% der Sahara. Der Staub wird regelmäßig mit warmen Luftmassen bis zu 5000 m hoch in der Atmosphäre verteilt und gelangt mit Südwinden oft bis nach Nordeuropa. Das jüngste Ereignis fand zwischen dem 26. und 28. Mai 2008 über dem Alpenraum statt. Die eingetragenen Stäube haben eine große Bedeutung für das Ökosystem im Nationalpark Berchtesgaden, denn die Stäube aus der Sahara und den kristallinen Zentralalpen haben allgemein eine hohe Düngewirkung für das Pflanzenwachstum im Gebirge, da sie reich an Pflanzennährstoffen sind. Besonders die an Bodensubstrat sehr armen, kargen Karstgebiete (z.B. Reiteralpe, Steinernes Meer, Lattengebirge, Untersberg etc.) profitieren von den windtransportierten Stäuben. Die Stäube sind somit auch Wuchssubstrat für zahlreiche Felsspalten- und Schuttgesellschaften der alpinen Flora, die als Pioniere Felsspalten, Schutthalden, Karsthohlformen und Klüfte in der alpinen bis subalpinen Stufe besiedeln.

Die Forschungen von Frau Dr. Küfmann sind für unsere Arbeit im Nationalpark von höchster Wichtigkeit. Sie können als Grundlage für weitere Untersuchungen dienen, z.B. wie sich die allgemeinen klimatischen Änderungen auf die Ökosysteme in unserem Park auswirken und wie die Natur damit umgeht.

> Dr. Michael Vogel Leiter der Nationalparkverwaltung

Flugstaubeintrag und Bodenbildung im Karst der Nördlichen Kalkalpen

PRIV.-DOZ. DR. CAROLA KÜFMANN

1 Einleitung

Das mehrjährige Forschungsprojekt (2000 bis 2003) zu Hochgebirgsböden im Karst konzentriert sich auf drei Untersuchungsgebiete (Zugspitzplatt, Karwendelgrube, Reiteralpe). Im Mittelpunkt steht das Bodeninventar der subalpinen und alpinen Stufe, insbesondere die Entwicklung der braunen Mineralböden. Alle Oberböden zeigen auffälligerweise Glimmer als Beleg für aktuellen Flugstaubeintrag. Die Wirkung dieser kristallinen Fremdstäube auf die Bodenentwicklung im Karstökosystem ist ein wesentlicher Forschungsschwerpunkt.

Des weiteren konzentriert sich das Projekt auf die systematische Erfassung der Staubdeposition. Erstmals werden sowohl Stäube aus Niederschlag (Sommer) als auch Staub auf Schneeoberflächen (Winter) quantifiziert. Eine neue Vorgehensweise ist zudem die Anpassung der Messintervalle an Witterungsverläufe und Großwetterlagen. Die statistische Analyse der Windund Niederschlagsverhältnisse untersucht die meteorologischen Einflüsse auf den Staubeintrag (z.B. Menge, Herkunft) und dient dem Verständnis der äolischen Dynamik im Gebirge.

1.1 Problemstellung und Motivation

Die Deposition von Flugstäuben in den Hochlagen der Alpen ist seit Anfang des 20. Jahrhunderts bekannt (z.B. BECKE 1901; GÖTZ 1940; HELLMANN und MEINARDIUS 1901). Bereits 1915 betont von LEININGEN die positive Wirkung von Mineralstäuben auf das alpine Ökosystem. Der äolische Eintrag findet als "Verstaubung der Hochgebirgsböden" (von LEININGEN 1908-1912, S. 1) Eingang in die Literatur. Dieser Prozess kommt auch im Substrattyp "Äolium-Kolluvium" zum Ausdruck, der in der Standortkarte des Nationalparks Berchtesgaden ausgewiesen ist (KONNERT 2004). Eine detaillierte Untersuchung dieser äolischen Substrate im Karst der Nördlichen Kalkalpen wurde bisher nicht durchgeführt.

Eine plausible Erklärung für diese Bearbeitungslücke ist die anerkannte Meinung, dass die Entwicklung von Mineralböden im Hochkarst klima- und substratbedingt gehemmt ist (GRAČANIN 1972; GROTTENTHALER 1982; KU-BIENA 1944, 1953; ZÖTTL 1965 a,b). Ausgeprägte braune Böden wie die Terra fusca, sind nur in geschützten Lagen (z.B. Dolinen) erhalten und werden deshalb häufig als tertiäre Braunlehmreste eingeordnet (BRONGER 1976; BRONGER und KALK 1979; HÄUSLER 1992; JANIK und SCHIL-LER 1960; RATHJENS 1938).

Anders verhält es sich in der Waldstufe, wo auf Lockersubstraten auch rezente Terrae fuscae kartiert sind (BIERMEYER und REHFUESS 1985; BOCHTER 1983; ZECH und Wölfel 1974).

Ähnlich konträr wird auch die Bildung der rötlichen Verwitterungslehme auf den Karsthochflächen diskutiert. Meist werden sie als fossile Terra rossa eingestuft, d.h. als ein Produkt der subtropischen Verwitterung im Bereich der tertiären Augensteinlandschaft (FRISCH et al. 1998, 2000; KUHLEMANN et al. 1999; THIEDIG 1970). Hingegen postuliert SOLAR (1964) aufgrund von Glimmerreichtum auch äolisches Ausgangssubstrat. Dies wird auch für optisch ähnliche Böden in den Talräumen und der montanen Stufe angenommen (GRAČANIN 1970; NEU-WINGER 1974; SCHÖNHALS und POETSCH 1976; ZECH und WÖLFEL 1974, 1975). Als Ausgangssubstrat werden hier kristalline Fernmoränen oder spätglaziale Lössdecken postuliert (HAMANN 1985; SCHÖNHALS 1953-1960; SCHÖN-HALS und POETSCH 1976).

Zusammenfassend münden diese konträren Ansichten in zahlreichen Vorschlägen zur genetischen Stellung der braunen Mineralböden (Abb. 1).

Abb. 1: Vorschläge zur Einordnung von braunen Böden im Karst der Nördlichen Kalkalpen (Entwurf der Verfasserin).

Daraus lassen sich für die Substratherkunft zwei zu prüfende Annahmen ableiten:

- a) Vorwiegend <u>autochthoner</u> Ursprung (Residualsubstrat aus der Karbonatverwitterung). Die Mineralböden sind Varianten der <u>Terra fusca</u> (Ah/T/C).
- b) Vorwiegend <u>allochthoner</u> Ursprung (z.B. äolisches Fremdsubstrat). Die Mineralböden sind Varianten der <u>Braunerde</u> (Ah/B/C).

1.2 Stand der Forschung

A) Bodengenese

Der bodenkundliche Bearbeitungsstand der Nördlichen Kalkalpen ist regional uneinheitlich und weist höhenstufenabhängig noch immer große Lücken auf.

In der montanen und unteren subalpinen Stufe sind die Grundlagen der Bodenentwicklung auf Karbonatgestein intensiv untersucht (z.B. BIERMEYER und REHFUESS 1985; BOCHTER 1983; GRAČANIN 1972; KREUTZER und GROTTENT-HALER 1991; MISHRA 1982; NEUWINGER 1970; WÖLFEL 1975; ZECH et al. 1986; ZÖTTL 1965 a,b). Wertvolle Ergebnisse zur Bodenökologe liefert zudem die forstwirtschaftliche Standortkunde und Ökosystemforschung (z.B. CELL 1972; GREMINGER 1982; HABER 1988; HERTER 1990; STORCH 1983, URBAN 1991). Glimmerreiche Böden werden je nach Ausgangssubstrat als "Terra fusca-Braunerde" oder "Parabraunerde-Terra fusca" ausgewiesen. Sie dokumentieren oft Mehrschichtprofile (z.B. BIERMEYER und REHFUESS 1985; SCHÖNHALS und POETSCH 1976; ZECH und NEUWINGER 1974).

In der subalpinen Krummholzstufe liegt der Forschungsschwerpunkt auf Rendzinen (z.B. Tangelrendzina) sowie Fels- und Skeletthumusböden (BOCHTER 1983; GROTTENTHALER 1982; KREUTZER und GROTTENTHALER 1990; MÜLLER 1986; RODENKIRCHEN 1986).

In der <u>alpinen Stufe</u> reduziert sich die Zahl der Bodenstudien deutlich. Wertvolle Ergebnisse liefern die jüngeren, geomorphologischen Arbeiten im Wetterstein- und Karwendelgebirge (CREDNER et al. 1998; HIRTLREITER 1992; HÜTTL et al. 1995; HÜTTL 1997-1999; SCHLOTT 1997). Weitere Hinweise finden sich in den zahlreichen vegetationskundlichen Studien (z.B. EGGENSBERGER 1994; POELT 1955; REHDER 1970; SAITNER 1989; SAITNER und PFADENHAUER 1992; SMETTAN 1981). Darunter sind die frühen Arbeiten zu Sedimenten an Schuttstandorten heute bodenkundlich von großem Interesse (ZÖTTL 1950, 1951, 1966).

Weit intensiver ist der Karst in den östlichen Kalkhochalpen bearbeitet (z.B. FISCHER 1976, 1984, 1990; GRAF 1972; LICHTENECKER 1936; ZWITTKOVITZ 1966). Dort dominieren Plateaugebirge mit ausgedehnten Karsthochflächen, die als Reste der tertiären Raxlandschaft diskutiert werden (z.B. Steinernes Meer, Untersberg, Lattengebirge, Hagengebirge, Tennengebirge, Dachsteinmassiv, Totes Gebirge, Raxalpe). Entsprechend konzentrieren sich dort die bodenkundlichen Untersuchungen auf die <u>Terrae calcis</u> (JANIK und SCHILLER 1960; KUBIENA 1944; ORTLAM 1980; RATHJENS 1938; SMOLIKOVA und LO-ZEK 1962; SOLAR 1964).

Lössdecken oder äolische Substrate sind trotz der diskutierten äolischen Beeinflussung und den neuen Befunde aus den West- und Zentralalpen (MAILÄNDER und VEIT 2001; VEIT 1988; VEIT und HÖFNER 1993) bis heute im Hochkarst der Nördlichen Kalkalpen nicht bearbeitet.

B) Flugstaub und äolische Dynamik

Aktuell konzentriert sich die Bearbeitung der Thematik "Staub in der Atmosphäre", auf die anthropogenen und großklimatischen Auswirkungen (z.B. JAFFE und SNow 2003; SCHÜTZ 2004; VARRICA et al. 2003). Für Europa und den Alpenraum ist rötlicher <u>Saharastaub</u> auf Gletschern (Schneestaub, Blutschnee, coloured snow, neige colorée) bedeutend (z.B. VALENTIN 1902; GLAWION 1938; LUNDQVIST und BENGTSSON 1970). Eisbohrkerne und Schneeprofile liefern chemisch-mineralogische Aerosoleigenschaften sowie Chronologien von Staubfällen über dem Alpenraum (DESSENS und PHAM VAN DINH 1990; FRANZEN et al. 1994; HAEBERLI et al. 1983; PETIT et al. 1981; SCHWIKOWSKI et al. 1995; SWITHINBANK 1950; TSCHIERSCH et al. 1990; WAGENBACH und GEIS 1989; WEISSHAAR et al. 1999).

Trotz dieser Aktualität fehlen noch immer systematische Messreihen, welche die Frage nach dem Staubeintrag im Boden beantworten können. So liefert die geomorphologische Feldforschung nur Grobabschätzungen, die häufig auf nicht vergleichbaren Methoden basieren (BRAUN-BLANQUET und JENNY 1926, 1936; FRIEDEL 1936; GLAWION 1939; von LEININGEN 1915; WINKLER v. HERMADEN 1945).

Lediglich GRUBER (1975) quantifiziert in größerem Umfang Staub auf Schneeflächen (Glocknergruppe/Österreich) und ermittelt für die alpine Stufe Sedimentationsraten von 0,05 mm/a bis 1 mm/a. Sonst liegen aus dem deutschsprachigen Alpenraum keine guantifizierten Angaben zum rezenten Staubeintrag im Bodensystem vor. Diesem großen Forschungsdefizit stehen zahlreiche aktuelle Ergebnisse zur äolischen Deposition in außereuropäischen Gebirgen gegenüber (z.B. BOCKHEIM und Ko-ERNER 1997; CHEN et al. 2002; DAHMS 1991-1993; DAHMS und Rawlins 1996; Mason et al. 1999; Mctainsh und LYNCH 1996; NICKLING 1978; ORTIZ et al. 2002; OWEN et al. 1992; HAMSIH et al. 1996; HEIMSATH et al. 1999; LITAOR 1987; McGowan et al. 1996; MUNN und SPACKMAN 1990; REHEIS und KIHL 1975; RENDELL 1989; SCOTT 2000; STET-LER UND GAYLORD 1996; THORN UND DARMODY 1980, 1985). Ebenso gut bearbeitet sind Saharastäube im mediterranen Gebirgsraum (z.B. MIZOTA et al. 1988; MORALES 1979; Moresi und Mongelli 1988; Nihlén 1990; Nihlén und MATTSSON 1989; NIHLÉN und SOLYOM 1986,1989; PRODI und FEA 1979; PYE 1992; RAPP 1984; RAPP und NIHLÉN 1986).

1.3 Ziele, Themenkomplexe und Fragestellung

Aus Kapitel 1.2 ergeben sich fünf Themenkomplexe mit folgenden Fragestellungen:

- 1. Feldbodenkunde
- Wie steuern Geologie und Relief die Entstehung von Mineralböden?
- Laboranalytische Charakterisierung der Bodengesellschaft
- Welche Kennwerte unterscheiden autochthone und allochthone Substrate?
- Gibt es Anhaltspunkte f
 ür m
 ögliche Bildungszeitr
 äume?
- Laboranalytische Charakterisierung der rezenten Stäube
- Welche Liefergebiete erschließen sich aus der mineralogischen Kennung?
- Welche bodenkundlichen Parameter kennzeichnen Flugstäube und äolische Substrate?
- 4. Staubquantifizierung und äolische Dynamik
- Wie hoch sind die Sedimentationsraten im Sommer und Winter?
- Wie steuern Wind und Niederschlag sowie Relief und Vegetation den Staubeintrag?
- 5. Praktischer Nutzen, Anwendungsbezug
- Welche Zusammenhänge bestehen zwischen Substrat, Boden und Vegetation?
- Wie wirken äolische Substrate im alpinen Karstökosystem?

1.4 Untersuchungsgebiete

Die Untersuchungsgebiete Zugspitzplatt (ZP), Karwendelgrube (KG) und Reiteralpe (RA) gehören zu den Nördlichen Kalkalpen, die im äußersten Süden Deutschlands zwischen dem Lech im Westen und der Salzach im Osten liegen (Abb. 2).

Abb. 2: Lage der Untersuchungsgebiete, ZP = Zugspitzplatt (Wettersteingebirge), KG = Karwendelgruben (Karwendelgebirge), RA = Reiteralpe (Berchtesgadener Alpen).

Wichtig für die Wahl der Untersuchungsgebiete sind die flächenhaften Vorkommen von reinen Kalksteinen (CaCO₃ > 95%). Dadurch sind kristalline Fremdsubstrate gut von autochthonen Bodensubstraten unterscheidbar. Des weiteren finden sich auf den Karsthochflächen von Wettersteingebirge und Reiteralpe zahlreiche Sedimentfallen (z.B. Dolinen, Karren). Diese Funktion erfüllen auch die Großdolinen der Westlichen und Östlichen Karwendelgrube (WKG, ÖKG) (Tab. 1).

A) Zugspitzplatt

Das 7,5 km² große Gebiet (2000 m bis 2600 m) wird von den Flusstälern der oberen Loisach (N, W), des Kankerbachs, der Isar (E) sowie des Puiten- und Gaisbachs (S) begrenzt. Die Zugspitze (2962 m) überragt die Karsthochfläche um ca. 400 m und liegt im Gratverlauf der

Foto 1: Das Zugspitzplatt mit den rasenbewachsenen Moränenständen (Blick nach N zur Plattumrahmung mit der Zugspitze am oberen linken Bildrand, Aufnahme 25.08.02).

Plattumrahmung. Diese umschließt als Wandflucht das Zugspitzplatt in Form eines nach E geöffneten Hufeisens. Die Ostgrenze des Arbeitsgebietes verläuft entlang der Latschengrenze, die im Übergang zum Hochkarst ungefähr der 2000 m-Isohypse folgt (Foto 1 und Tab. 10).

B) Karwendelgrube

Sie liegt im Bereich der Nördlichen Karwendelkette über dem Becken von Mittenwald (980 m) und ist durch die Bergstation "Karwendelbahn" (2244 m) erreichbar. Die Staatsgrenze zu Österreich stellt die Südgrenze dar. Weitere Eckpunkte sind die Westliche Karwendelspitze (2385 m) im W und die Nördliche Linderspitze (2374 m) im E (Foto 2).

Zwischen Westlicher Karwendelspitze und Nördlicher Linderspitze ist die Doline entlang eines windausgesetzten Grates nach S geöffnet. Dahinter schließt sich der SE-exponierte Luvhang der Kirchlwiese an. Das Arbeitsgebiet liegt in der alpinen bis subnivalen Stufe. Ergänzend liegen Bodenprofile aus der Östlichen Karwendel-

Tab. 1: Kurzcharakteristik der Untersuchungsgebiete (UG)

Gebirgsgruppe /	Zugspitzplatt ZP	Karwendelgrube KG	Reiteralpe RA
Höchste Erhe-	Wettersteingebirge /	Karwendelgebirge /	Berchtesgadener Alpen /
bung	Zugspitze (2962m)	Birkkarspitze (2749m)	Hochkönig (2941m)
Talort / Zugang	Garmisch-Partenkirchen (707m) / Baver, Zugspitzbahnen	Mittenwald (980m) / Karwendelbahn	Unterjettenberg (516m) / Seilbahn der Bundeswehr
Höhe UG ü.NN / Höhenstufe	2000m – 2600m alpin bis subnival	2000m – 2400m alpin bis subnival	1500m – 1800m subalpin bis alpin
Anstehendes Gestein	Wettersteinkalk (Ladin)	Muschelkalk (Anis) (WKG) Reichenhaller Schichten rh (Anis) (ÖKG)	Dachsteinkalk (Nor) Kreide- u. Liaskalke (Gosau) als Deckenreste
Substratformen	Fels, Schutt, Lokalmoräne	Fels, Schutt	Fels, Schutt, Lokalmoränenreste
Relieftyp	Tertiärer Altflächenrest (Typ: Raxlandschaft), Schichtkopf- und Schichtflächenkarst	Großdoline (WKG), Karmulde (ÖKG) im Steilwandrelief	Tertiärer Altflächenrest (Typ: Raxlandschaft), Schichtrippen- und Schichtkopfkarst
Klima	Ozeanisch	bis kontinental geprägtes Hochg	ebirgsklima

Foto 2: Die Westliche Karwendelgrube mit den dichtbewachsenen äolischen Deckschichten auf den im Bild besonnten Leehängen (Blick nach SSW; Aufnahme 25.09.02).

grube vor, die über den Felsgrat "Damm" ins Dammkar nach N leitet (Anhang 10.1).

C) Reiteralpe

Die Reiteralpe (21 km²) liegt zwischen Unterjettenberg (516 m) im N und dem österreichischen Lofer (614 m) und Weißbach (660 m) im SSW. Der Gebirgsstock wird im N und W von der Saalach sowie im E und SE von Klaus- und Schwarzbach begrenzt. Die Karsthochfläche der Reiteralpe ist in einer geologischen Synklinale angelegt und allseits von steilabfallenden Wänden umrahmt. Markante Gipfel sind: Alphorn (1708 m) im N, Weitschartenkopf (1979 m) im W, Edelweißlahnerkopf (1953 m) im E und das Stadelhorn (2287 m) im Süden.

Die Staatsgrenze zu Österreich trennt das Karstplateau der Reiteralpe zwischen dem Weitschartenkopf (1978 m) und dem Schottmalhorn (2031 m) von NW nach SE in einen <u>Nord- und Südteil.</u> Das Nordplateau weist ein mittleres Höhenniveau von 1600 m bis 1700 m auf und liegt fast vollständig in der Kernzone des Nationalparks. Das Südplateau steigt entlang einer tektonischen Bruchlinie zwischen Guggenbühl im W und Eisbergscharte im E zu den Reiter Steinbergen an. Die untersuchten Bodenprofile liegen in der oberen subalpinen bis unteren alpinen Höhenstufe (Foto 3; Tab. 10).

Foto 3: Der Schichttrippenkarst in der subalpinen Stufe der Reiteralpe (Blick SW, Aufnahme 25.08.03).

1.4.1 Physiogeographie

Details zur Physiogeographie sind in den vergleichenden Tabellen 5 bis 10 am Ende dieses Kapitels zusammengefasst.

Das Wettergeschehen wird allgemein durch drei Großwetterlagen charakterisiert:

- Westlagen (antizyklonal, zyklonal, winkelförmig) mit Winden aus westlichen Richtungen und hoher Niederschlagswahrscheinlichkeit.
- Nordlagen (antizyklonal, zyklonal) oft in Verbindung mit Nordwestlagen. Im Winter sind Niederschläge, im Sommer Kaltlufteinbrüche charakteristisch.
- Südlagen (antizyklonal, zyklonal) begünstigen Föhnwinde und Staubtransport aus südlichen Liefergebieten.

A) Zugspitzplatt

Das Zugspitzplatt liegt im Kern der Reintal-Synklinale und ist aus ladinischem Wettersteinkalk (≥ 98% CaCO₃+ MgCO₃) aufgebaut. Die tektonische Lagerung bedingt den ausgeprägten Schichtflächen- und Schichtkopfkarst in der alpinen Stufe (2000 m bis 2350 m). Noch heute trägt das Platt mit dem Nördlichen Schneeferner den größten Gletscher der bayerischen Alpen (HERA 1996). Die verschiedenen Zeitphasen der Vergletscherung sind durch Moränenwälle und -schleier dokumentiert (HERA 1996, HIRTLREITER 1992). Kennzeichen der Moränenstandorte in der alpinen Stufe sind hohe Deckungsgrade der Vegetation (> 75%) und fortgeschrittene Bodenbildung (HÜTTL 1999).

Entscheidend für die Staubeinträge ist die Häufigkeit der Windrichtungen, wobei die staubrelevante Südwindtätigkeit mit 23% vertreten ist. Maxima treten sowohl im Jahr 2002 als auch im langjährigen Mittel (1931-1960, DWD München) im Frühjahr (Mai) und Herbst (September) auf (Tab. 2).

B) Karwendelgrube

Das Gebiet besteht aus triassischen Schichtserien. Hauptgestein in der WKG ist der alpine Muschelkalk (Anis) und in der ÖKG die Reichenhaller Schichten (Tab. 5 bis 7). Sie umfassen Kalk- und Dolomitsteine sowie ausgeprägte Brekzien entlang der Überschiebungszone "Lechtal-/Inntaldecke" im oberen Dammkar (FRISCH 1964). Besonders die rötlich verwitternden Brekzien fördern die Bodenentwicklung (SCHLOTT 1997). Aktive Schutthalden dominieren im Steilrelief und ziehen im E und W in die Westliche Karwendelgrube (Sass 1998). Diese 200 m breite Hohlform ist eine "strukturell angelegte, präglaziale Gipfelgroßdoline" (FELS 1929, S. 15). Der Höhenunterschied zwischen dem Dolinentiefsten und der Gipfelumrahmung beträgt 130 m bis 140 m. Wichtig für die Windverhältnisse ist die Talfurche von Mittenwald-Seefeld, die als Föhngasse den hohen Anteil der Südwinde im Jahr bewirkt. Die Sektoren SW und SE sind mit 47% vertreten (SASS 1998).

C) Reiteralpe

Auch das Karstplateau der Reiteralpe ist in einer geologischen Mulde angelegt. Dort steht als Hauptgestein der Tab. 2: Mittlere Häufigkeit [%] der Windrichtung auf der Zugspitze (2962 m) (DWD: 1995-1997; Einteilung in 30° Sektoren).

NNW	N	NNE	ENE	E	ESE	SSE	S	SSW	WSW	W	WNW	0
9	16	17	1	1	2	8	8	7	4	16	11	100
No	ordsektor	: 42	0	stsektor	: 4	Sü	dsektor	: 23	We	stsektor	: 31	100

Foto 4: Tektonische Brekzie (Dachsteinkalk) im Anschlag. Die Haarrisse sind mit eisenoxidhaltiger Matrix verheilt (Schrecksattel 1670 m, 25.08.02).

massige bis gut gebankte Dachsteinkalk (Nor) vom Reiteralmtyp an. Er baut auch den oberen Bereich der Gipfelumrahmung auf (Tab. 5 bis 7). Entlang tektonischer Störungen ist der hellgraue Kalk im Anschlag durch Eisenoxide brekziiert und rotgeädert bis getupft (Foto 4). "Schwimmende Scherben" (GILLITZER 1912, S. 14; BÖGEL 1971) bezeichnen Bänder und Knollen aus Ton, die den Kontaktbereich zwischen Dachsteinkalk und der ehemaligen Jura- und Kreidedecke markieren. Schwellenkalke (Lias) treten nur inselhaft auf. Hingegen sind kreidezeitliche Deckenreste (mittlere bis untere Gosau) in der geologischen Mulde vom Reitertrett gut erhalten. Die wasserstauenden Mergel der Glarnecker Schichten ermöglichen dort Almweidebetrieb (Foto 5).

Je nach Schichtneigung und glazialer Bearbeitung durch den pleistozänen Plateaugletscher, der nach W über die Alpaalm ins Saalachtal sowie nach NE in Richtung Schwarzbachwacht abfloss, tritt Schichtkopf- und Schichtrippenkarst auf.

Diese Typen gehören zum <u>nackten Karst</u>, der jenseits der Waldgrenze (bei ca. 1900m) im Bereich der Reiter Steinberge dominiert. Kennzeichen sind glattpolierte Flächen, steilgestellte Rippen oder rundhöckerartige Schichtköpfe mit einer Vielzahl von erosiven Kleinformen (z.B. Rinnen-, Rillen-, Kluftkarren). In Abhängigkeit von der Kluftdichte tritt in jeder Höhenstufe auch Frostschutt auf. <u>Halbbedeckter Karst</u> ist im Nordplateau an den aufgelockerten Lärchen-Zirben-Wald mit gro-Ben Flächenbeständen von *Pinus cembra* gebunden (Foto 3; Tab. 9).

Foto 5: Reste der gosauzeitlichen Decksedimente (Glarnecker Schichten) im Almgebiet Reitertrett im latschenbedeckten Schichtrippenkarst (Blick nach E, 24.08.03).

Die mittlere Niederschlagsverteilung geht auf unterschiedlich lange Messzeiträume zurück, da auf der Reiteralpe selbst keine kontinuierliche Erfassung der Klimadaten vorliegt (ENDRES 1979). Im Vergleich zur Talstation Schwarzbachwacht verzeichnet das Plateau einen Niederschlagszuwachs von 15% bis 17% (Tab. 3).

Der Schneedeckenaufbau beginnt im Oktober. Auf der Hochfläche beträgt die Schneehöhe zwischen 150 cm und 200 cm (10-jähriges Mittel). Der Schneedeckenabbau beginnt zwischen April und Mai. Im Mai werden im Mittel noch 19 Tage mit einer Schneedecke von mehr als 1 cm registriert.

Für die Beurteilung der Windverhältnisse dient die Klimastation Watzmannhaus (1820 m). Die Verteilung der Windhäufigkeiten ergibt dort im Vergleich zur Zugspitze eine deutliche Ostwindkomponente. Winde aus dem Südsektor sind ganzjährig vertreten, mit Minima in den Sommermonaten (Tab. 4).

Klimastationen RA	Jan.	Feb.	Mär.	Apr.	Mai	Juni	Juli	Aug.	Sept.	Okl.	Nov.	Dez.	Summe
Traunsteiner Hütte (1560m) (Reihe: 1934-1941)	147	149	131	155	207	270	324	266	192	155	133	124	2253
Reiteralpe-Plateau (1500m) (Reihe: 1939-1944)	142	146	130	153	204	266	318	264	188	153	128	122	2214
Schwarzbachwacht (830m) (Reihe: 1931-1960)	120	126	116	134	178	232	269	162	135	109	106	191	1878

Tab. 3: Niederschlagsverteilung im Bereich Reiteralpe (Daten: ENDRES 1979).

Tab. 4: Relative Häufigkeit [%] der Windrichtungen im Jahr 2002, Watzmannhaus (1820 m) (Daten: DWD).

Windsektor:	Jan.	Feb.	Mär	Apr.	Mai	Juni	Juli	Aug.	Sept.	Okt.	Nov,	Dez.
N (315-45°)	1	15	19	41	22	24	28	32	26	4	3	4
E (45-135°)	19	12	5	9	15	11	16	15	15	17	26	29
S (135-225°)	48	34	43	33	35	21	14	26	17	41	35	35
W (225-315°)	32	39	33	18	28	44	42	28	42	38	36	33
Summe [%]	100	100	100	100	100	100	100	100	100	100	100	100

Tab. 5: Vereinfachte Stratigraphie der Trias in den Untersuchungsgebieten (Quellen: vgl. Angaben von Tab. 8).

		Zugspitzplatt /Wettersteingebirge		Karwendelgrube / Karw	endelgebirge	Reiteralpe / Berchtesgadener Alpen			
Alter	Epoche	Schichtserien	Vorkommen	Schichtserien	Vorkommen	Schichtserien		Vorkommen	
	Rät	Kössener Schichten (50m?)		Kössener Schichten (20-150m)		Kössener Schichten (w	venige m)	nicht im Gebiet Rei- teralpe	
	New	Plattenkalk (bis 300m)	NW-Vorland, z.B. Loisach-	Plattenkalk (250-400m)	Kern der Wellerstein- Hauptmulde	Nor-Rāt: Dachsteinkal (700-800m): - häufig rotgeäderte eisenhaltig)	k (Reiteralm-Typ) a Brekzie (Matrix tonig,	Hochfläche der Rei-	
	NOT	Hauptdolomil (bis 1000m)	Sater, Elosee	Hauptdolomit (bis 1400m)		 z.T. lokale Dolom höhere Lagen: röl Bånder (Tone, Eis tiefere Lagen: ble 	men		
	Karn	Raibler Schichten (verschieden)	im E der Rein- talmulde, z.B. Schacherr	Raibler Schichten (220-550m)	Wamberger Sattelzug im N	Karnisch-norischer Dolomit (bis 200m): grau bis graubraun, massig bis gebankt		im Liegenden des Dachsteinkalks, die Reiteralpe umge- bend	
TRIAS	Ladin	Wettersteinkalk - oberer (lagunär) - mittlerer (lagunär) - unterer (Rilfazies) (insgesamt bis 1200m)	Zugspitzplatt, Hauptgipfel- Bildner Riffazies im Zugspitz- massiv	Wettersteinkalk - oberer (lagunär) - mittlerer (lagunär) - unterer (Riffaztes) (Insgesamt bis 1500m)	Hauptgipfeibildner in der Nördlichen Kanwendelket- te, z.B. Kircht-Spitze, Vierer Spitz, Brunnstein- Spitze	Wettersteinkalk u dolomit: Kalkstein, heligrau, lokal bräuntich, z.T. dolomitisch	Ramsaudolomit (800-1000m): Dolomitstein, hellgrau bis weißlich, grusig verwitternd nicht ausgebildet	Sockeibildner der Reiteralpe	
		Partnachschichten (bis 600m)	z.B. Höllental	Partnachkalke (300-400m)	Wamberger Sattelzone	- Their dageonicer			
		Alpiner Muschelkalk (bis 500m): Kalke, Hornstein- knollen, Tuffit-Lagen	N u.NW Steilab- fälle des Hoch- gebirges	Alpiner Muschelkalk (300-450m): Kalke, Hornsteinknolle, Tuffit- Lagen	Gipfelbildner in der West- lichen Karwendelgrube, z.B. West. Karwendelspil- ze, Linderspitze	Skythisch-anisische Karbonatserie (50-100m): Dolomit- und Kalksteine, lokal Mergelsteine		West- und Südost	
	Ants	Reichenhaller Schichten (100-200m): Kalke, Dolomite, Brekzien, Rauhwacken	W-Fuß der Zugspilze	Reichenhaller Schichten (>200m): Kalke, Dolomite, Brek- zien, Rauhwacken	Kirchl-Kar, Östliche Kar- wendelgrube, Auf dem Damm, Basis der Westl. Karwendolspitze			der Reiteralpe, meist von Moräne verhüllt	
1.1	Skyth	nich! aufgeschi	ossen	nicht aufg	geschlossen	Werfener Schichten (b			

Tab. 6: Faziestypen des Wettersteinkalks. (Quelle: Reis 1911, S. 67ff, Miller 1962, S. 24ff).

 Tab. 7: Faziestypen der anisischen Serie um Mittenwald. (Quelle: ROTHPLETZ 1888; JERZ und ULRICH 1966, S. 12ff).

ALTER	FAZIESTYP	Wichtige Eigenschaften	ALTER	FAZIESTYP	Wichtige Eigenschaften
TRIAS	oberer Wetterstein- kalk	 rostig bis rotbraun im Handstück gut gebankt, in Zwischenlagen rhythmisch feingeschichtat, stellt die oberen 100 bis 200 m dar unruhige Sedimentation u. synsedimentäre Feinbrekzien Erzanreicherungen von Bleigtanz (PbS), Zinkblende (ZnS). Flußspat (CaFs), Pvrit 	TRIAS	oberer Muschelkalk	 dunkelgraue, bläulichgraue angewitterie Kalke, gut gebankt , schwacher Bitumengehalt Schichtflächen häufig knollig (Knollenkalke) kalziverheitte Klüfte im Hangenden oft geringmächtige Mergellagen oder -kalke, Hornsteinknollen, z.T. Tufflibänkchen südl, der Überschiebungslinie _Lechtal-Inntal-Decke Hornsteinlagen abneh- mend
		(FeS2) in Überzügen u. Nestern, an Grenz- horizonte (z.B. zw. oberem Wk und Raibler Schichten) gebunden		mittlerer Muschelkalk	 helle, graue dickbankige bis massige Kalksteine partienweise fossilführend (Crinoidenreste, Cidaris-Bruchstücke, Brachiopo- den)
	mittlerer Wetterstein-	 bräunlich bis gelb dolomitische Kalke, z.T. auch Dolomite vorzügliche Bankung Algenreichtum 		unterer Muscheikalk	 dunkelgraue bis grauschwarze Kalke, gut gebankt, merklicher Bitumengehalt zahllose kalzitverheitte Klüfte im höheren Bereich zunehmend Kieselknollenkalke mit nachgewiesenen grünen Tuffitagen der Pietra verde
	kalk	 Mächtigkeit im Bereich der Zugspitze bis 150 m, nach S zunehmend. ersetzt im Bereich der Wetterspitzen den unteren Wk vollständig (z.B. gebankte Platspitzen und Gatteriköpfe) 	Anis	Reichenhaller Serie	 Kalke, Dolomite, Brekzien im Liegenden des Muschelkalks Kalke: dunkelgrau bis grauschwarz, bituminös, spätig, viele katzitverheilte Klüfte; Dolomite: grau bis hellgrau braungrave, röllichbraune dolomitische Kalke mit porösen Verwitterungsflä- chen
	unterer Wetterstein- kalk	 hellgrau bis hellbraungelb grobbankig bis meist massig dolomitische Lagen mit Großoolithen 		Reichenhaller Brekzie	 tektonische Brekzion im Liegenden der rh Schichten begrenzen Überschiebung der Inntal-Decke nach N bzw. bilden Basis der Überschiebungsmasse grau bis graubraun, z.T. rötlichbraun verwitternd monomiktes bis polymiktes Komspektrum, kalkige Matrix+ kalkige Klasten

Tab. 8: Vereinfachte Stratigraphie von Jura und Kreide in den Untersuchungsgebieten (Schichtmächtigkeiten [m] Quellen: Westl. Wettersteingebirge: MILLER 1961, 1962; Karwendelgruben: JERZ und ULRICH 1966; Reiteralpe: Erläuterungen z.Geol. Karte von Bayern, 1:500.000; Geol. Karte 1:25.000 Blatt Nationalpark Berchtesgaden; GILLITZER 1913; RATHJENS 1939).

		Zugspitzplatt / Wettersteing	ebirge	Karwendelgrube / Ka	arwendelgebirge	Reiteralpe / Berchtesgadener Alpen				
Alter	Epoche	Schichtserien	Vorkommen	Schichtserien Vorkommen		Schichlserien	Vorkommen			
KREIDE	Neo- kom	Grüne Aptychenschichten (300m vermulet) Biancone (0-70m)	nd des Wettersteingebirges nm / Puitental	Aptychenmergel (20 bis 60m)	gebirge im S, als Füllung der vie im Leutasch- u. Putlental	Mittlere Gosau (m ?]: Ais Decken Glanecker Schichten (Wasserstauer): Ais Decken auf der Hoc - heilgraue, dichte Mergelkalke Reiteralpe i - dunkelgrüne Tonmergel Reiteralpe i - z.T. dünne Sandsteinbändchen + Gilmmerblättchen Reiterlett Untere bis mittlere Gosau (m ?]: Kalksteine, z.T. sandig: - Mikrokalkstein-Brekzle ähnlich Untersberger Mar- mor mit llefroler Tupfung und torigen Elsenoxiden)				
1	Malm	Bunte Aptychenschichten (1-30m)	S- und W- Re erl / Hoher Kar	Aptychenschichten (30-mehr als 100m)	Ind Karwende synklinale so	mausgraue Brekzie mit Steinkohleschmitzen				
JURA	Dogger	Radiolariigruppe (3-10m) Alloäuschichten (100-200m)	nzone am z.8, Gatt	Bunte Mergel (0 bis >15m)	pe im N.L Karwendel	nicht vertreten				
	Lias	Adneter Kalk (bis 30m)	Jungschichte	Bunter Liaskalk (0 bis>25m)	Zw. Solerngrup Mitterwalder	Hierlatz-Kalke (10-25m) (blass- bis kräftig rote Kalke)	kleinste Deckenreste z.E Eisbergalm			

Tab. 9: Karstgliederung in den Nördlichen Kalkalpen. (Quellen: Hüttt 1994, 1999; Nomenklatur: Bögli 1969a, 1978; Fink 1976; HASERODT 1965; NICOD 1976; SCHUNKE 1976, SPIEGLER 1973; WEINGARTNER 1983).

Gliederung	Typische Formen	Dominante Verbreitung (Höhenstule)
Karst ohne Vegetationsbedeckung > 90% Gestein, < 10% Vegetation und Boden	 durch Frostsprengung zerstörter Karst ("Scherbenkarst") Karrenfelder mit freien Karren (Rillen-, Rinnsal-, Trittkarren) strukturgebundene Kluftkarren und Dolinenreihen Schutt- und Einsturzdolinen Schächte, Halbhöhlen, Karstgassen 	nival bis alpin
Sonderform: Glazlo-Karst = Karst auf glazial geschliffenen Gesteinsschichten Je nach tektonischer Lagerung und Neigung: Schichtflächen- / Schichtkopf-Karst Schichtrippen- / Schichtkreppen-Karst	 Schachf- und Einsturzdolinen grasbesetzte Dolinenreihen mit Schlucklöchern Karstgassen, Karstspalten Schichtflächen mit Rinnen-, Rillen-, Lochkarren, Biokarstformen Schichtköpfe und Rundhöcker mit Karrenkleinrellef Dolinen in bewachsenem Substrat (Lokalmoräne, Schütt) bodengefüllte Karrenfußnäpfe, Rinnenkarren, Kamenitza 	subnival bis alpin
Karst mit unterschiedlicher Vegetations- und Bodenbedeckung ⇒ z.B. halbbedeckter Karst ⇒ (50% Gestein / 50% Vegetation etc.)	 Rund- und Lochkarren, Karstbecken, Karrenfußnäpfe z.T. bodengefüllt Lösungsdolinen, Uvalas, vegetationsbedeckte Karstgassen und ausgeprägto Dolinenfelder und –reihen Rillen-, Rinnsalkarren nur auf nacktern Fels 	alpin bis subalpin (obere)
Bedeckter Karst , d.h. > 90% Vegetation subkutaner Karst, Wald- oder Grünkarst	 Rundkarrenrelief unter Vegetation Lösungsdolinen, Schlucklöcher, Uvalas 	subalpin bis submontan

Tab. 10: Höhenzonierung und dominante Vegetationsgesellschaften (Aufnahmen: CREDNER 1995 (Zugspitzplatt); SAITNER 1989, SAITNER und PFADENHAUER 1989 (Karwendelgebirge); STORCH und SEIDENSCHWARZ 1996 (Reiteralpe), in : Nationalparkplan 2001, Vegetationskarte Nr. 6).

Stufe	Zugspitzplatt / Wettersteingebirge	Karwendelgruben / Karwendelgebirge	Reiteralpe / Berchtesgadener Alpen
nival	2963- – Algen, Flechten; z.T.Phanerogamen 2600m (z.B. Papaver sendineri, Saxifraga aphylla)	nicht. existent	nicht existent
subnival	Kalkschutt- u. Kalkfelsgesellschaften: – Thlaspietum rotundifolli (Täschelkrauthalde) 2600– – Leontodontetum montani (Berglöwenzahnhalde) 2350m – Arabidetum caeruleae (Gänsekresse-Boden) – Salicetum retuso-reticulatae (Spalierweidenrasen	Pioniervegetation: – initiale Stadien der Kalkschutt- und Kalkfelsge- >2300m sellschaften der alpinen Stufe	Pioniervegetation: - Kalkschult- und Kalkfelsgesellschalten >2200m - Flechtenüberzüge, Moose
atpin	 Kalkmagerrasen-Gesellschaften: Unterschiedliche Reifestadien von: Caricetum firmae (Polsterseggenrasen) Seslenio-Caricetum sempervirentis (Blaugras- Horstseggenrasen) 2350- sowie azonał: 2000m Vertreter der Kalkschutt- u. Kalkfelsgeselischaften der subnivalen Stufe in Abhängigkeit von Standort, Sub- strat, Schneebedeckung, Relief 	Kalkmagerrasen-Gesellschaften: Unterschiedliche Reifestadien von: - Caricelum firmae (Polsterseggenrasen) - Seslerio-Caricelum sempervirentis (Blaugras- Horstseggenrasen) 2300- Kalkschutt- und Kalkfeisgesellschaften: 2000m - Thlaspietum rolundifoli (Täschelkrauthalde) - Leontodonteium montani (Berglöwenzahnhalde) - Arabidelum caeruleae (Gänsekresse- Schneeboden) - Doronicetum grandiflori (Gemswurzflur) - Salicetum herbaceae (Silikal-Schneetälchen)	Kalkmagerrasen-Gesellschaften: Unterschiedliche Reifestadien von: - Garicetum firmae (Potsterseggenrasen) - Sesierio-Caricetum sempervirentis (Blau- gras-Horstseggenrasen) 2200- sowie azonale Sondertypen: 1900m - Caricetum ferrügineae (Rostseggen- Halde) - Laserpillo-Sesterletum (Karbonat-Lahner)
subalpin	Zwergstrauch- u. Krummholzgesellschaft: – Rhododendro-hirsuli Mugelum prostratse – Veccinio-Rhododendretum ferruginei 2000- 1650m	Zwergstrauch- u. Krummholzgesellschaft: Rhododendro-hirsuli Mugetum prostratee Vaccinio-Rhododendretum ferruginel Adenostyletelia (Hochstaudenflur) 2000- sowie azonal: Athamanto-Trisetum distlichophylli (Augenwurz-Goldhaferflur) Caricetum ferrugineae (Rostsaggenrasen)	Zwergstrauch- u. Krummholzgesellschaft: – Erico-Rhododendretum hirsuli – Rhododhirsuti Mugetum sphagnelosum – Alnetum viridis (Grünerlen-Gebüsch) 1900- 1400m Subalpiner Wald: – Vaccinio-Pinetum cembrae (Lärchen-Zitbenwald + Fichte) – Aderostyle glabre-Piceetum caric. semp. (Karbonal-Lärchen-Fichtenwald)

2 Methoden und Lage der Messeinrichtungen

A) Angewandte und abgewandelte Standardmethoden

Geomorphologische und pedologische Feldmethoden

- Kartierung wichtiger Reliefeinheiten (Schwerpunkt Karstmorphologie 1:10.000)
- Überblickskartierung: Substrate, Boden- und Vegetationstypen
- Detaillierte bodenkundliche Aufnahme von 63 Profilen

Geochemische, mineralogische Laboranalysen (Gestein, Boden, Staub)

- Bodenchemie
- Karbonat- und Residualgehalte im Gestein
- Schwermineralanalyse
- Haupt- und Spurenelementverteilung (RFA)
- Röntgendiffraktion (RDA) der silikatischen Leichtminerale
- Makroskopische und mikroskopische Analysen

Korngrößenbestimmung

 Kombiniertes Nasssieb- (63 µm bis 2000 µm) und Schlämmverfahren (< 2 µm bis 63 µm), Pipett-Methode nach Köhn im AtterBerg-Zylinder und gesonderte Bestimmung des Grobschluffs

Quantifizierung von Staubeinträgen

- Messung der Einträge auf Schneeoberflächen (Horizonttiefe: 0 cm-1 cm)
- Messung der Einträge aus Niederschlag mit Staubfangkästen (Sommer) und Totalisatorwannen (Winter)

Auswertung klimatologischer Steuerungsfaktoren

- Analyse von Gro
 ßwetterlagen, Witterungsverl
 äufen
- Statistische Auswerteverfahren

B) Probenmaterial

Gestein

Mineralische Substrattypen (C-Horizonte) der autochthonen Bodengenese sind Festgestein (mCn; mCv), Kalkschutt (> 20 mm; ICv) sowie Lokalmoräne (ICv) mit Geschiebelehm. Entsprechende Proben werden zu Gesteinsmehl (63 µm bis 2 µm) verarbeitet und der tonige Lösungsrückstand (Residuum) gewonnen.

Boden

Es werden Böden mit A/B/C-Profilen (Klasse: Braunerden) und A/T/C-Profilen (Klasse: Terrae calcis) sowie ausgewählte Profile von Rendzinen und O/C-Böden in folgenden Horizonten beprobt: Mineralischer Oberboden Mineralischer brauner Unterboden Organische Humusauflagen

(A-Horizonte) (B-, T-Horizonte) (O-Horizonte)

Flugstaub

Hierunter wird in erster Linie äolisches Fremdmaterial und zweitens äolisch transportfähiges Material aus der lokalen Umgebung (z.B. Humus- und Karbonatstaub) verstanden. <u>Staub aus Regenniederschlag</u> wird in der schneefreien Zeit (Mai bis Oktober) erfasst. <u>Staub von Schneeoberflächen</u> wird nass oder trocken auf Schneeflächen abgelagert und je nach Höhenlage der Gebiete zwischen Oktober und Juni quantifiziert. Davon unterscheiden sich Mischsedimente auf Altschneeresten mit Beimengungen von Klasten > 200 µm.

2.1 Bodenchemische Analysen

Die unterschiedlichen Mengen und Arten der Proben (Boden, Staub, Residuen) bedingen ein breites Methodenspektrum. Es liegen die Standardverfahren der Laborkunde zugrunde (z.B. AG BODEN 1996; ALLMAN und LAWRENCE 1972; SCHLICHTING et al. 1993). Folgende Parameter sind am Feinboden (< 2 mm) bestimmt (Tab. 11): kochen, Nachspülen mit dest. Wasser, Trocknen bei 105 °C und Rückwiegen.

C) Gravitative Bestimmung des Silikatanteils (= unlöslicher Rückstand)

Berechnung aus der verbleibenden Differenz zur Gesamtprobe. Der unlösliche Rückstand wird einer Korngrößenanalyse im Laser-Sedigraphen unterzogen.

D) Korngrößenbestimmung

Sehr geringe Mengen (Staub, Residuen, organische Auflagen) werden im Sedigraphen (Coulter LS 200 Particle Size Analyzer) bestimmt. Dieses Gerät misst mit einem Laserstrahl (750 nm Wellenlänge) die Größe der mit einer Pumpe in Suspension gehaltenen Partikel. Die Fraktionen vom Mittelton bis zum Grobsand (0,4 µm bis 2000 µm) werden abgegriffen, wodurch sich z.T. zu geringe Tongehalte ergeben.

Die Einwaage beläuft sich bei den Lösungsresiduen auf 2 g bis 5 g, bei den Flugstäuben auf 1 g bis 3 g. Bei Letzteren handelt es sich meist um Sammelproben, die entweder pro Messstelle von den stark variierenden Flugstaubmengen (2 mg bis 700 mg) über mehrere Messzeiträume gewonnen werden oder pro Messintervall eine Mischprobe aus allen Probenstellen darstellen.

Verfahren / Methode	Geräte
Potentiometrisch (0,01n CaCl ₂ -Lösung) im Ver- hältnis 1:2,5 nach 30min. und 24h	Glaselektrode und pH- Meter Typ 521, WTW
Gasvolumetrisch	Scheibler-Apparat
Berechnung organische Substanz: Corg x 1,72	C/N-Analyzer
nach SCHWERTMANN (1964)	
nach MEHRA und JACKSON (1960)	Flammen-AAS bzw. Spektralphotometer
nach MEIWES et al. (1984) Austausch mit NH₄ im Perkolationsverfahren ohne Zerstörung der organischen Substanz	
nach TRÜBY (1989) reaktionsfähiges Al3+ und H+	
	Verfahren / Methode Potentiometrisch (0,01n CaCl ₂ -Lösung) im Ver- hältnis 1:2,5 nach 30min. und 24h Gasvolumetrisch Berechnung organische Substanz: Corg x 1,72 nach SCHWERTMANN (1964) nach MEHRA und JACKSON (1960) nach MEIWES et al. (1984) Austausch mit NH4 im Perkolationsverfahren ohne Zerstörung der organischen Substanz nach TRURY (1980) reaktionsfähinger Al3t und Ht

Tab. 11: Übersicht der bodenchemischen Analysen.

Geringe Staubmengen werden folgendermaßen analysiert:

A) Gravitative Bestimmung des Feststoffgehalts (mg): Entfernen der Makropflanzenreste durch Absieben. Nach Absetzen der Suspension Dekantierung und Überführen der Restsuspension in vorgewogene Bechergläser (100 ml). Das Restwasser wird im Trockenschrank bei 105 °C entfernt, der Feststoffgehalt nach Abkühlen im Exsikkator durch Rückwaage bestimmt.

B) Gravitative Bestimmung: organische Substanz, Gesamtkarbonat (< 2 mm):

Aufkochen mit je 20 ml H₂O₂ (10%ig), Nachspülen mit dest. Wasser. Trocknen bei 105 °C und Rückwiegen. Im Anschluss Zugabe von 20 ml HCl (10%ig), kurzes Auf-

Bei den Feinerdeproben aus organischen Humusauflagen ist ein zeitaufwendiges Zerstören der organischen Substanz (bis zu 30-maliges Aufkochen mit H₂O₂) nötig.

2.2 Mineralogische Analysen

Die aufwendigen, kostenintensiven Mineralanalysen werden auf Referenzproben konzentriert (Durchführung: Dr. U. RAST, Dipl.-Geogr. L. DUFFY, Geologisches Landesamt, München).

A) Quantitative Bestimmung von CaCO₃, MgCO₃ und Residuum im Gestein

Die Gesteinsproben werden nach Zerkleinerung (Backenbrecher, Kugelmühle) zu Gesteinsmehl (Frak-

tion 63 µm bis 2 µm) verarbeitet. Die Einwaage (10 g) wird durch Zugabe von 10%iger Salzsäure vom Karbonatanteil befreit, der Aufschluss gefiltert und auf Kalzium und Magnesium titriert. Der separierte Lösungsrückstand wird im Filter getrocknet und gewogen.

B) Schwermineralanalyse (Methode RAST 1991)

Die Schwerminerale werden aus der Kornfraktion (0,1 mm bis 0,25 mm) gewonnen. Zur Auszählung kommen pro Einzelprobe 200 bis 300 Körner, bei geringer Kornmenge oder aufgrund sehr hoher Anteile an Opaken auch weniger.

C) Haupt- und Spurenelementverteilung - Röntgenfluoreszenz-Analyse (RFA)

Die Haupt- und Spurenelemente werden im Schmelzaufschlußverfahren mit Hilfe der RFA an feingemahlenen Gesteins- und Bodenproben (< 2 µm) bestimmt und quantitativ erfasst. Die Molverhältnisse von Oxiden (z.B. SiO₂/Al₂O₃) werden als Parameter berechnet.

D) Röntgendiffraktion (RDA) der silikatischen Leichtminerale

Von gemörserten Proben werden texturarme Pulverpräparate hergestellt. Die qualitative und quantitative Analyse der Leichtminerale in Bodenproben (Methode: RAST 1993; TRIBUTH und LAGALY 1991) erfolgt an Texturpräparaten der Tonfraktion (< 2 µm). Es wird das Röntgendiffraktometer Typ D 5000 der Firma Siemens verwendet (Einstellung: 5-70° mit 2 sec pro Stufe 0,02°/s). Die PC-Auswertung erfolgt mit der Braggschen Gleichung:

$2 \operatorname{d} \sin (\Theta_n / 2) = n\lambda$

- d = Abstand benachbarter gleichartiger Netzebenen im Kristall
- O = Winkel zwischen Primärstrahl und gebeugtem Strahl
- n = Zahl der Beugungsordnung ≥ 1
- λ = Wellenlänge der Strahlung

E) Makroskopische Analysen

Zur Identifizierung der Mineralgemenge wird die Lichtmikroskopie (Auf- und Durchlicht, Polarisationsmikroskopie) eingesetzt. Die Staubproben werden zuerst am Makroskop (Binokular; Leitz, Gesamtvergrößerung 80fach) begutachtet und dann Fotoabzüge hergestellt. Anschließend werden stärkere Objektive und Vergrößerungen verwendet (Objektiv 10,0 / 20,0 / 45,0).

Der Feststoffanteil wird nach Trocknung bei 30 °C einer ersten Sichtung unterworfen. Liegen mineralische Komponenten vor, dann werden die organischen Anteile in den Staubproben zerstört (Aufkochen mit H_2O_2 6%) und der Mineralrest durch spezielle Miniatur-Nylonsiebe (Maschengrößen: 63 µm, 53 µmm 40 µm, 25 µm) gerieben (Durchführung: Dipl.-Geogr. N. OLSZEWSKY, Institut für Geologie, LMU München).

F) Mikroskopische Analysen

Die Identifizierung erfolgt am Polarisationsmikroskop

(Gerät: meopta /Praha 56511 / 52162) im Durchlicht anhand von Streupräparaten mit Immersionsflüssigkeiten unterschiedlicher Lichtbrechung nach den Standardverfahren (ALLMAN und LAWRENCE 1972). Die Fotoaufnahmen stammen von einer Sony-Digitalkamera DCR-PC 100 (Durchführung, Identifizierung: Dipl.-Ing. Dr. J. KROLL, Garmisch-Partenkirchen).

2.3 Feldansprache und Beprobung

Die Aufnahmen umfassen Akkumulationslagen (Dolinen, Karren, Lee-Lagen) und Erosionslagen (Windkanten, Grate) entlang von Catenen in folgenden Höhenstufen:

- Alpine Stufe, Zugspitzplatt (1980 m bis 2350 m)
- Alpine Stufe, Karwendelgruben (2000 m bis 2350 m)
 Obere subalpine bis untere alpine Stufe, Reiteralpe (1500 m bis 1750 m)

Für das Zugspitzplatt werden hier die Profile der Catenen 2 bis 4 erläutert. In der WKG liegen die Bodenprofile P1 bis P16 in Abhängigkeit von Exposition und Luv-Lee-Effekten dispers verteilt. Drei Vergleichsprofile aus der Östl. Karwendelgrube (ÖK_P5 bis ÖK_P7) kommen dazu. Auf der Reiteralpe konzentrieren sich die Profile im Nordplateau (Catenen 1 bis 4). Catena 5 zeigt die Böden der Dolinenfelder (Große Doline 1 und 2) am östlichen Plateaurand zwischen Saugasse und Wachterlsteig (Tab. 12, Anhang 10.1).

Ansprache und Nomenklatur folgen der AG BODEN (1996). Zusätzlich wird die Einordnung in das internationale System der *World Reference Base for Soil Resources* (ISSS-ISRIC-FAO 1998) vorgenommen. Die Farbansprache folgt der *Munsell Soil Color Charts* (KIC 2000). Die Beprobung findet pro Horizont als Mischprobe aus dem gesamten Horizont inklusive der C-Horizonte statt. Folgende Feldparameter sind besonders berücksichtigt:

- Ausgangssubstrate
- Mächtigkeit der braunen Horizonte (Solumtiefe)
- Status der Verbraunung (Bodenfarbe) und Verlehmung (Fingerprobe)
- Beimengung von Glimmer, Schluff, Sand (Fingerprobe)

Insgesamt liegen 63 Einzelprofile (Bohrstock+Grabung) vor, die hinsichtlich der Standardparameter untersucht sind. Referenzprofile stehen für eine Gruppe von Bodentypen und sind durch zusätzliche bodenchemische (KAK, oxalatlösliches Fe, pedogene Oxide des Fe, Al, Mn) und mineralogische (RFA, RDA, Schwerminerale) Eigenschaften gekennzeichnet. Einige Profile sind aufgrund der geringen Mengen an mineralischer Feinerde in den A-Horizonten (< 2 cm) und O-Horizonten (org. Substanz > 30%) nicht durchgängig analysiert.

2.4 Flugstaubmessung

Die Aerosolforschung zeigt verschiedene Messmethoden zur Erfassung von Industriestäuben (z.B. CADLE

Tab. 12: Lage der Bodenprofile und Catenen.

Profilschnitt Name	Catena 1			J		
Name		Catena	2	Cater	1a 3	Catena 4
Name	Profil A-A'	Profil B	-B'	Profi	C-C'	Profil D-D'
Höbo ü NN	AV-Weg-Sonnalpin	n Knorrhü	tte – AV Weg	Knorr	hütte - Plattsteig	Plattsteig - Brunntal
none u. MM	2250m-2600m	2065m-	2250m	2065	m-2000m	2000m-2150m
Lage	Frostschuttzone	Schicht	lächenkarst	Schic	htflächenkarst	Moränenwälle
Richtung	WNW-ESE	NW-SE		N-S		E-W
Profile 1)	Carbonat-Syrosen	ne 2) ZP P34	. 11. 45	ZP P	17, 18, 19, 20	ZP P21, 29, 47
Profilschnitt C	Catena 1	Catena 2	REITERALPE			
of a balance of the second s		Valcila	Catena 3		Catena 4	Catena 5
P	Profil A-A'	Profil B-B'	Catena 3 Profil C-C'		Catena 4 Profil D-D'	Catena 5 Profil E-E'
Name W S	Profil A-A' Vartstein- Schrecksattel	Profil B-B' Schrecksattel-NTS	Catena 3 Profil C-C' NTS-Alpas	teig	Catena 4 Profil D-D' NTS-Saugasse	Catena 5 Profil E-E' Saugasse- Wachterlsteig
Name W S Höhe ü. 1 NN	Profil A-A' Vartstein- Schrecksattel 700m-1620m	Profil B-B' Schrecksattel-NTS 1620m-1570m	Catena 3 Profil C-C ² NTS-Alpas 1570m-170	teig)0m	Catena 4 Profil D-D' NTS-Saugasse 1570m-1500m	Catena 5 Profil E-E' Saugasse- Wachterlsteig 1500m-1400m
Name W S Höhe ü. 1 NN Lage P	Profil A-A' Vartstein- Schrecksattel 700m-1620m 'lateaurand NNW	Profil B-B' Schrecksattel-NTS 1620m-1570m Karstplateau	Catena 3 Profil C-C' NTS-Alpas 1570m-170 Plateauran	teig 00m d W	Catena 4 Profil D-D' NTS-Saugasse 1570m-1500m Karstplateau	Catena 5 Profil E-E' Saugasse- Wachterlsteig 1500m-1400m Plateaurand E
Name M S Höhe ü. 1 NN Lage P Richtung N	Profil A-A' Vartstein- Schrecksattel 700m-1620m Pateaurand NNW INW-SSE	Profil B-B' Schrecksattel-NTS 1620m-1570m Karstplateau N-S	Catena 3 Profil C-C' NTS-Alpas 1570m-170 Plateauran ENE-WSW	teig DOm d W	Catena 4 Profil D-D' NTS-Saugasse 1570m-1500m Karstplateau SW-NE	Catena 5 Profil E-E' Saugasse- Wachterlsteig 1500m-1400m Plateaurand E W-E

1975; DIEM 1957; DIEM und JURKSCH 1961; GRAEDEL und FRANEY 1975; HASENCLEVER 1954; LÖBNER und NEHLS 1957; MAIER 1956; MELDAU 1958; OST und MIRISCH 1955; SCHMIDT und GIES HEIDERMANN 1959; VDI 1971a,b).

Staub wird durch Winde schwebend in Staubwolken verlagert (trockene Deposition) oder geht als "wash-out" (nasse Deposition) aus Regen oder Schnee nieder (KNUTSON et al. 1977; WELLBURN 1997). Die trockene Deposition wurde in der älteren Forschung meist über fettbeschichtete (Vaseline, Glyzerin) Folien auf Haftschichten (Alufolie, Glas, Metall) im Gelände bestimmt (EFFENBERGER 1959a,b). Diese Methode ist im Gebirge nicht zielführend, da Sonneneinstrahlung und hohe Niederschlagsmengen ein zu schnelles Abgleiten der Fette bewirken.

Bewährt ist jedoch die Staubmessung über den Niederschlag. Dafür stehen in Deutschland drei Standardtypen von Sammeltrichtern zur Verfügung (Messhöhe 1,5 m; VDI 1971a,b).

Darauf basierend sind besonders im Gebirge zahlreiche Eigenkonstruktionen (Eimer, Zylinder, Rohr, Tonne, Kanister mit Auffangtrichtern) im Einsatz (DAHMS und RAW-LINS 1996; MUNN und SPACKMANN 1990; NIHLEN und MATTSSON 1989; REHEIS und KIHL 1995). Die Staubmenge [mg] wird bezogen auf die Auffangfläche in Eintragsraten (z.B. µg/Fläche/Zeiteinheit) umgerechnet.

2.4.1 Verwendete Messtechnik

Da die geomorphologische Forschung kein Standardverfahren zur Stauberfassung im Bodensystem kennt, werden neue Staubfangkästen konstruiert. Ihnen liegt ein Blumenkasten aus Hartplastik (38 cm lang, 17 cm breit, 13 cm hoch) zugrunde. Zur Simulation der bremsenden Wirkung der alpinen Mattenvegetation werden in Abwandlung der Kunstrasenfänger von HANNOSCHÖCK et al. (1999) perforierte Plastikfußmatten (Auffangfläche 646 cm²) mit 1 cm langen Borsten als Abdeckung benutzt. Sie ähneln der Oberflächenstruktur des Polsterseggenrasens (*Caricetum firmae*). Die Mattenunterseite erhält engmaschige Fliegengitter.

Ein Überlauf (2 cm unterhalb des Kastenrandes) mit Metallsieben (< 63 µm) verhindert Wasserstau und Materialverlust. In den Kästen wird die natürliche Sedimentation genutzt. Mit einem allseitigen Abstand (3 cm bis 4 cm) zum Grabloch sind die Kästen im Boden eingesenkt. Die erhöhte Lage der Auffangfläche (5 cm über Boden) verhindert den Zuschuss von Bodenmaterial aus Hangwässern. Bei der Leerung wird der Großteil des Wassers abgesaugt und der Bodensatz mit Restwasser in PVC-Flaschen überführt (Foto 6).

Zusätzlich werden Plastikwannen (45 cm lang, 30 cm breit, 45 cm hoch, 1350 cm²) als Totalisatoren verwendet. Die Wannen besitzen ein Überlaufventil und werden vor dem Einschneien in ebener Lage installiert. Damit läuft nur das Schmelzwasser aus der vertikalen Schneesäule zu und die enthaltene Staubfracht setzt sich am Wannenboden ab. Sofort nach dem Abschmelzen der Schneedecke wird der Wanneninhalt als Wintersumme geborgen. Die Ergebnisse dienen der Abschätzung von winterlichen Raten bezogen auf die Wannenfläche.

Foto 6: Selbstkonstruierter Staubfangkasten. Das Bild zeigt den Status während der Wartung. Auf der Schmalseite ist der erhabene Überlauf zu sehen (rund, im Schatten). Ein Silikonschlauch führt die Suspension in Probenflaschen über (31.05.02, Zugspitzplatt 2200 m).

A) Instrumentierung der Messstellen

Die Meßstellen sind wie folgt ausgestattet (Tab. 13 und Anhang 10.1):

- <u>Regenkanister</u> (10 I, Auffangtrichter 176 cm²) zum Sammeln des Niederschlags
- Staubkasten (nasse und trockene Deposition)
- Eimer (10 I, Auffangfläche 642 cm²) mit Fliegengitterbespannung (nasse und trockene Deposition) ohne Berücksichtigung der Oberflächenrauigkeit

B) Messintervalle der Stauberfassung im Sommer

Der Messzeitraum umfasst jeweils die schneefreie Zeit in den Sommern 2002 und 2003. Die Leerung erfolgte 2002 in unterschiedlich langen Intervallen (7 bis 32 Tage), um eine Vorstellung vom Verhältnis zwischen Staubmenge und Zeitdauer zu erhalten. Im Messsommer 2003 wurden je nach Witterungsverlauf 10 bis 21tägige Intervalle angestrebt. Dieser Rhythmus konnte durch die raschen Wetterwechsel nicht immer eingehalten werden (Tab. 14).

C) Rechengrößen und Einheiten Summe Gesamtstaub G bzw. Summe

Summe Gesamistaub G bzw. Sum

Silikatstaub S [µg]:

Die Menge der ermittelten Gesamtstaub- bzw. Silikatstaubanteile pro Messintervall.

Staubrate [µg/d]:

Die Menge der im Messintervall ermittelten Gesamtstaub- bzw. Silikatstaubmenge [µg] dividiert durch die Anzahl der Tage [d].

Eintragsrate [µg/d/cm²]:

Die Division der Staubrate durch die Auffangfläche liefert eine Normierung und Vergleichbarkeit der Werte unterschiedlicher Standorte und Gebiete.

Sedimentationsrate [µm/Zeit, mm/Zeit, cm/Zeit]:

Sie ergibt sich aus den Eintragsraten durch Einrechnen der Materialdichten (Staub: 1,3 g/cm³; Residuum: 1,5

g/cm³; Kalkstein: 2,65 g/cm³, Humus (< 2 mm, org. Substanz: 0,6 g/cm³).

2.4.2 Staubuntersuchung auf Schneeoberflächen

Die Stäube der Schneeoberfläche (0 cm -1 cm) werden innerhalb eines klappbaren Holzrahmens (Fläche: 1 m²) mit einer Spachtel abgehoben, in Plastiksäcke verpackt und im Labor verarbeitet (THORN und DARMODY 1980). Bei geringer Staubmenge (optische Beurteilung der Dunkelfärbung) wird die Bezugsfläche vergrößert. So erhält der Feststoffgehalt der Schneeprobe einen Flächenbezug [µg/m²] und unter Berücksichtigung des Schemas zur Probennahme eine Zeitdimension.

A) Probennahme

Auf der geschlossenen Schneedecke während der Wintermonate erhält das deponierte Staubmaterial keine störende Materialzufuhr aus der unmittelbaren Umgebung. Es werden zwei Fälle berücksichtigt:

- Fall 1: nasse Deposition durch Neuschnee ("wash-out")
- Fall 2: trockene Deposition ohne Niederschlag auf Schneeoberflächen

Im Fall 1 (nasse Deposition) erfolgt die Probennahme direkt nach Neuschneefällen, d.h. Staub wird nur aus frischem Neuschnee erfasst. Bei Witterungsverläufen mit geringen Niederschlägen (z.B. 2 mm pro Tag) gibt es auch schneefreie Stunden mit möglicher trockener Deposition, Hier ist die trockene Deposition zu vernachlässigen, da durch *wash-out* die Staubkonzentration in der Luft gering ist (Wertung der Proben auch als Neuschneeproben).

Im Fall 2 (trockene Deposition) werden Schneeoberflächen beprobt, die mehrere Tage ohne Neuschneezuwachs bleiben. In diesen niederschlagsfreien Perioden akkumulieren Stäube durch die Wirkung der herrschenden Windverhältnisse. Da bei der Probennahme nur die oberste Schicht (0 cm bis 1 cm) erfasst wird, ist eine Verfälschung durch die darunter liegenden Horizonte weitgehend vermieden. Das Messintervall erstreckt sich unter Miteinbeziehen der Daten von Niederschlag und Schneedeckenentwicklung vom Tag der Probennahme zurück bis zum letzten Tag mit Neuschneezuwachs.

Von besonderem Interesse sind Großwetterlagen mit südlichen Winden, die Saharastaub transportieren können wie z.B. die südliche Westlage, die Südostlage, das abgeschlossene Hoch über Mitteleuropa, die Hochdruckbrücke über Mitteleuropa (von SW nach NE) und schließlich die Troglagen über West- bzw. Mitteleuropa (HAUER 1952). Je nach Witterungsperiode wird in Zeiträumen von 21 bis 35 Tagen beprobt. Die Probennahme erfolgt je nach Höhenlage der Gebiete zwischen Oktober und Juli in 22 Intervallen. Wegen Lawinengefahr liegen keine lückenlosen Messreihen vor (Tab. 15). Tab. 13: Instrumentierung der Meßstellen.

Meßstelle	Höhe / Exp. / Neigung /(Bodentyp)	Instrumentierung
ZP1	2250m / 170° SSE / Mittelhang 45° / (Polsterrendzina P1)	S1-ZP, N1-ZP, E1-ZP
ZP 2	2150m / 110° ESE / Plateau 5° / (Polsterrendzina P2)	S2-ZP, N2-ZP, TW2_ZP
ZP 3	2050m / 160° SSE / Unterhang 15° / (Braunerde P18)	S3-ZP, N3-ZP
ZP 4	2050m / 160° SSE / Mittelhang 30° / (Braunerde P19)	S4-ZP, N4-ZP
ZP 5	2000m / 158° SSE / Hangmulde 5° / (Braunerde P17)	S5-ZP, N5-ZP, E5-ZP
Karwendelg	rube / Karwendelgebirge	
Meßstelle	Höhe / Exp. / Neigung /(Bodenprofil) ¹⁾	Instrumentierung
KG 1	2260m / 135° SE / Mittelhang 40° / (Braunerde P1)	S1-KG, N1-KG, E1-KG
KG 2	2270m / 330° NNW/ Oberhang 42° / (Mullrendzina P2)	S2-KG, N2-KG, E2-KG
KG 3	2300m / 50° NE / Mittelhang / 45° / (Braunerde P7)	S3-KG, N3-KG
KG 4	2300m / 330° NNW / Hangverebnung 10° / (Braunerde P 8)	S4-KG, N4-KG, E4-KG; TW4_KG
Reiteralpe /	Berchtesgadener Alpen	
Meßstelle	Höhe/Exp./Neigung /(Bodenprofil)1)	Instrumentierung
RA 1	1700m / 96° E / Hangmulde 2° / (Braunerde-Terra fusca P 11)	S1-RA, N1-RA, E1-RA
RA 2	1720m / 180° S / Oberhang 10° / (Braunerde P14)	S2-RA, N2-RA
RA 3	1565m / 4° N / Unterhang 5° / (Braunerde-Terra fusca P12)	S3-RA, N3-RA, E2-RA
RA 4	1600m / 156° SSE / Hangfuß 5° / (Braunerde P13)	S4-RA, N4-RA; TW4 RA

Tab. 14: Messintervalle der Sommer 2002 und 2003.

Zugspitzplatt		Karwendelgebirge	1	Reiteralpe	
Intervalle 2002	Dauer [Tage]	Intervalle 2002	Dauer [Tage]	Intervalle 2002	Dauer [Tage]
31.0502.07.02	32	29.0624.08.02	56	03.0717.07.02	14
02.0709.07.02	7	24.0802.09.02	9	17.0730.08.02	44
09.0716.07.02	7	02.0913.09.02	11	30.0806.09.02	7
16.0701.08.02	16	13.0923.09.02	10	06.0920.09.02	14
01.0815.08.02	14	1.20 - C - C - C - C			
15.0807.09.02	23				
am 25.09.02 Winter- einbruch	Σ99 Tage	am 24.09.02 Wintereinbruch	Σ 86 Tage	zw. 25.09. und 20.10.02 Schneebedeckung	Σ 79 Tage
Zugspitzplatt		Karwendelgebirge		Reiteralpe	
Intervalle 2003	Dauer [Tage]	Intervalle 2003	Dauer [Tage]	Intervalle 2003	Dauer [Tage]
26.0603.07.03	7	30.0514.06.03	15	12.0626.06.03	14
03.0731.07.03	28	14.0620.06.03	6	26.0608.07.03	11
31.0727.08.03	27	20.0602.07.03	12	08.0707.08.03	30
27.0818.09.03	22	02.0709.07.03	7	07.0816.08.03	15
	1	09.0730.07.03	21	16.0826.08.03	10
		30.0717.08.03	18		
		17.0826.08.03	9		
1		26.0804.09.03	9	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1.000
and the second second		04.0917.09.03	13		
am 20.09.03 Winter- einbruch	Σ 84 Tage	am 24.09.03 Wintereinbruch	Σ 111 Tage	am 24.09.03 Schnee- bedeckung	Σ80 Tage

Tab. 15: Schneeprobennahme im zeitlichen Verlauf der Großwetterlagen (Quelle: DWD 2002, 2003).

Januar 02	31.122. Jan	0310.Jan	1117. Jan	1831.Jan	1831. Jan	1831, Jan			
Wetterlage	NWz	HM	HBrM	Wz	Wz	Wz			
Proben			RA 11.01.02						
Februar 02	0105.Feb	0613. Feb	1418.Feb	19-25. Feb	2628. Feb	01. Mrz			
Wetterlage	SWz	Wz	HBrM	NWz	Wz	Wz			
Proben	RA 02.02.02								
April 02	01. Apr	0211. Apr	1220.Apr	2125. Apr	2630. Apr				
Wetterlage	HM	HF	TrM	HBrM	Wz				
Proben		ZP 09.04.02	ZP 11.04.02			100000			
Mai 02	0105. Mai	0611. Mai	1215. Mai	1621. Mai	2229. Mai	3031. Mai			
Wetterlage	TrW	SEa	SWz	HBrM	TrM	HM			
Proben	KG 01.05.02	RA 11.05.02	KG 12.05.02	KG 17.05.02		ZP 31.05.02			
Juni 02	0103. Jun	0409. Jun	1016. Jun	1723. Jun	2427. Jun	2830. Jun			
Wetterlage	HM	SEz	Wz	SWa	HBrM	Wz			
Proben		ZP 07.06.02		ZP 20.06.02					
Juli 02	0107. Jul	0812. Jul	1320. Jul	2127. Jul	2831. Jul				
Wetterlage	Wz	SWz	TrM	Wz	HNFz				
Proben	ZP 02.07.02				ZP 31.07.02				
Oktober 02	0103.Okt.	0407.Okt.	0814.Okt.	1523.Okt.	2431.Okt.				
Wetterlage	HM	NWz	HNFa	SWz	Wz				
Proben					KG 26.10.02				
Dezember 02	0103. Dez	0416. Dez	1720. Dez	2126. Dez	2731. Dez				
Wetterlage	Ww	HFa	HM	Ww	Wz				
Proben			RA 11.12.02						
Januar 03	0104.Jan	0511. Jan	1220. Jan	2123. Jan	2427. Jan	2831. Jan			
Wetterlage	Wz	HB	Wa	TrW	HBrM	Nz			
Proben	KG 03.01.03	1.			ZP 24.01.03				
Februar 03	0107. Feb	0813. Feb	1421. Feb	2227. Feb	28. Feb				
Wetterlage	Nz+ NWz	HBrM	HFz	Sa	Ubergang				
Proben	RA 05.02.03	KG 13.02.03							
Mai 03	0106. Mai	0713.Mai	1423.Mai	2426.Mai	2731.Mai				
Wetterlage	SWz	HBrM	Wz	TrW	HM				
Proben	RA 07.05.03	ZP 11.05.03			KG 30.05.03				
	1	KG 07.05.03							
Erläuterungen									
HM Hoch	über Mitteleuror	ba		N _z Nordl	age, zvklonal				
HBrM Hocho	ruckbrücke übe	er Mitteleuropa		NW- Nordy	vestlage, zvklon	al			
HB Hoch	über Britischen	Inseln		NW- Nordy	vestlage, antizvk	donal			
HE Hoch	über Fennoska	ndion		W Wort	and antizyklona	l			
HE Hoch	über Fennoska	ndion antizukla	nol	Wa West	lage, antizykiona	u			
Hra Hoch	Nordmoor ontin	nulen, anuzykiu	IIdi	Wz West	age, zykiullai				
HINa HOCH	Nordmeer, and	cykional		www vvest	age, winkellorm	g			
HNF _a Hoch	Nordmeer Fenr	ioskandien anti	zykional	Sa Súdla	ige, antizyklonal				
HNF _z Hoch	Nordmeer Fenr	ioskandien zykl	onal	Sz Südla	ige, zyklonal				
TM Tief ü	ber Mitteleuropa	a		SW _a Südw	estlage, antizykl	onal			
TB Tief ül	ber den Britisch	en Inseln		SW _z Südw	estlage, zyklona	1			
TrM Trog i	iber Mitteleurop	а		SE _a Südo	stlage, antizykloi	nal			
TrW Trog i	iber Westeurop	TrW Trog über Westeuropa				SEz Südostlage, zvklonal			

2.5 Klimatologische Auswertung

Häufigkeit der Windgeschwindigkeit pro Windrichtung:

Die Windereignisse pro Messintervall werden als absolute Häufigkeiten pro Windrichtung, verknüpft mit der jeweiligen Windgeschwindigkeit [m/s], erfasst und in Form von Häufigkeitstabellen oder als Stärkewindrosen dargestellt. Die Einteilung erfolgt in 30°-Sektoren (0°-330°). Grundlage sind die Stundenmittel pro Messtag, die sich aus den 24 Stundenwerten (0 h bis 23 h) von Windstärke und -richtung ergeben.

Eingeführte Rechengröße "Windtätigkeit" [m/s · h]:

Sie ist eingeführt, um für jeden Tag die Faktoren Windgeschwindigkeit [m/s] und Windrichtung [°] zu kombinieren. Basis sind die 24 Stundenwerte der Klimastationen Watzmannhaus und Zugspitze, die jeweils einen Wert der Windrichtung mit der verknüpften Windgeschwindigkeit [m/s] liefern. Aus den Häufigkeitstabellen ergibt sich durch Aufsummieren der stündlichen Windgeschwindigkeiten pro Windsektor die rechnerische Größe der "Windtätigkeit". Die Windtätigkeit ist ein Maß für die gesamte <u>Windaktivität</u> (Summe aller Windgeschwindigkeiten pro Richtungssektor) oder für die Windaktivität einzelner Sektoren (z.B. Summe der Südwindtätigkeit im Sektor 150° bis 180°) für die Anzahl der Tage eines Messintervalls. (Tab. 16).

Die statistische Auswertung erfolgt nach BAHRENBERG et al. (1990). Daten liefern folgende Stationen: Wartsteinkopf (1700 m, RA), Watzmannhaus (1820 m, RA), Zugspitze (2962 m, ZP) und Nördliche Linderspitze (2347 m, WKG). Sie sind durch die Hilfe von Dr. G. HOFMANN (DWD, München) und Dipl.-Geogr. H. VOGT verfügbar. Die Aufbereitung der Einzelwerte und die graphische Darstellung der Windrosen stammen von Dr. Köhler (DWD, München). Die Winddaten und die Daten zur Schneedeckenentwicklung der Stationen Linderspitze, Wartsteinhaus und Zugspitzplatt (2600 m) stellen Dr. B. ZENKE und G. KRONTHALER (Lawinenzentrale, Landesamt für Wasserwirtschaft, München) kostenlos zur Verfügung.

Tab.	16: Datenbeispiel zur E	Bestimmung der rechnerischen	Größe der Windtätigkeit	(Zuaspitze, 31.05.03	, DWD, München).
	the second the state with the second s			(1

Uhrzeit	Richtung	Wind	1-	31-	61-	91-	121-	151-	181-	211-	241-	271-	301-	331-
31.05.03	[°]	v [m/s]	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
00:00	290	4,8	0	0	0	0	0	0	0	0	0	4,8	0	0
01:00	310	4,6	0	0	0	0	0	0	0	0	0	0	4,6	0
02:00	340	5,3	0	0	0	0	0	0	0	0	0	0	0	5,3
03:00	320	5,0	0	0	0	0	0	0	0	0	0	0	5,0	0
04:00	300	5,6	0	0	0	0	0	0	0	0	0	5,6	0	0
05:00	310	5,5	0	0	0	0	0	0	0	0	0	0	5,5	0
06:00	330	4,9	0	0	0	0	0	0	0	0	0	0	4,9	0
07:00	300	4,2	0	0	0	0	0	0	0	0	0	4,2	0	0
08:00	270	4,1	0	0	0	0	0	0	0	0	4,1	0	0	0
09:00	270	2,1	0	0	0	0	0	0	0	0	2,1	0	0	0
10:00	270	2,3	0	0	0	0	0	0	0	0	2,3	0	0	0
11:00	260	2,6	0	0	0	0	0	0	0	0	2,6	0	0	0
12:00	280	3,9	0	0	0	0	0	0	0	0	0	3,9	0	0
13:00	310	3,2	0	0	0	0	0	0	0	0	0	0	3,2	0
14:00	290	3,1	0	0	0	0	0	0	0	0	0	3,1	0	0
15:00	330	5,2	0	0	0	0	0	0	0	0	0	0	5,2	0
16:00	360	5,8	0	0	0	0	0	0	0	0	0	0	0	5,8
17:00	10	5,9	5,9	0	0	0	0	0	0	0	0	0	0	0
18:00	10	5,9	5,9	0	0	0	0	0	0	0	0	0	0	0
19:00	340	6,3	0	0	0	0	0	0	0	0	0	0	0	6,3
20:00	350	6,3	6,3	0	0	0	0	0	0	0	0	0	0	0
21:00	10	5,7	5,7	0	0	0	0	0	0	0	0	0	0	0
22:00	360	7,9	0	0	0	0	0	0	0	0	0	0	0	7,9
23:00	340	6,3	0	0	0	0	0	0	0	0	0	0	0	6,3
Windtätig für 31.05	keit (m/s · .03	h]	17	0	0	0	0	0	0	0	11	22	28	32

3 Theoretische Grundlagen der äolischen Dynamik im Gebirge

3.1 Definitionen

A) Der Begriff "Staub"

Der Begriff "Staub" bezeichnet Sedimentations- und Schwebstaub mit unterschiedlichen Teilchendurchmessern und Bildungsquellen. Der Staub ist entweder von natürlichen Oberflächen durch Verwitterung entstanden oder wird aus künstlichen Staubquellen emittiert (Tab. 17).

Staub bezeichnet im engeren Sinne feste Partikel in der Atmosphäre, wenngleich er auch innerhalb fester oder flüssiger Aggregatzustände auftritt (Eis, Nebel). Hier sind Aerosole zu nennen, die bei der Nebel- und Wolkenbildung als Kondensationskerne dienen (KÜMMEL und PAPP 1990). Der Staub wird aufgewirbelt, in die Atmosphäre verteilt und durch Winde schwebend transportiert. Die Ablagerung erfolgt mit Staubwolken durch Einwehen oder Niederschläge (KNUTSON et al. 1977).

B) Der Begriff "Flugstaub"

Synonyme sind z.B. äolischer Staub, (a)eollan dust, poussière éolienne. Sie bezeichnen Naturstäube aus mineralischen und organischen Anteilen (DANIN und GANOR 1991; FETT 1958; Péwé et al. 1981). In der vorliegenden Arbeit bezeichnet der Begriff "Flugstaub" ebenfalls Naturstäube, die aufgrund der Laboranalyse in drei Anteile gegliedert werden:

Silikatstaub S

Kalkstaub K

- Organischer Staub H

(silikatischer Anteil) (humoser Anteil) (karbonathaltiger Anteil)

In der Summe (S+H+K) ergibt sich der Gesamtstaub **G**. Pedologisch umfasst Flugstaub die Kornklassen des Feinbodens (< 2 mm; nach DIN 19683 Teil I+II) zwischen Feinsand (200 µm bis 63 µm), besonders Feinstsand (125 µm bis 63 µm) und Ton (< 2 µm).

Die äolische Transportfähigkeit von Staub hängt von Masse, Form und Bindigkeit der Partikel ab und sinkt bei Sanden (> 200 µm) und Tonen. Das Transportoptimum von äolischen Sedimenten liegt beim Schluff (2 µm bis 63 µm), besonders im Intervall von Grobschluff (63 µm bis 20 µm). Allerdings ist die Dominanz von Grobschluff kein striktes äolisches Kriterium mehr, da Transportstrecke und geologische Beschaffenheit der Deflationsgebiete stark variable Korngrößenspektren der Stäube hervorrufen (MCTAINSH et al. 1997; MIZOTA et al. 1988; PYE 1984; 1987).

Ein Beispiel sind Fernstäube aus der Sahara, die häufig aus Feinstpartikeln (< 4 µm bis < 16 µm) bestehen (z.B. McTainsh und Walker 1982; Nihlén und Mattsson 1989; Morales 1979; Nihlen und Solyom 1989).

Tab. 17: Staubarten und Partikeldurchmesser (Quellen: CADLE 1975; DIEM und JURKSCH 1961; KÜMMEL und PAPP 1990; PYE 1987; WELLBURN 1994).

	Einteilung nach der Bildungsquelle	the second s
Name	Charakteristik	Durchmesser
1. Natürlicher Staub / Naturstaub:	Deflationsmaterial von natürlichen Oberflächen: - Kosmischer Staub - Irdischer anorganischer Staub (z.B. Vulkanstaub, Löß) - Organischer Staub - Aerosole, Kerne (z.B. Salzkristalle, Mineralpartikel) Verwitterungsmaterial in Bodensystemen: Schluff	2-200μm 1-10μm 2-60μm
2. Anthropogener Staub:a) Kulturstaubb) Künstlicher Staub	 Emissionen künstlicher Staubquellen: Technischer Staub (Werkstaub) Abfallstaub Feuerungsstaub Staubförmiges Material aus Vermahlung, Zerstäubung Staubförmige Massengüter 	<2 bis > 500µm
	Einteilung nach der Ablagerungsgeschwindigkeit	
 Sedimentationsstaub: a) Grobstaub b) Staub (Feinstaub) 	Feststoffe hoher bis mittlerer Ablagerungsgeschwindigkeit	> 500µm 2-500µm
2. Schwebstaub (Feinststaub):	2. Schwebstaub Sehr geringe Ablagerungsgeschwindigkeit, Bildung von smog (Feinststaub):	
	Einteilung nach dem Aggregatzustand	
1. Rauch:	Feststoffe in Gasen aus natürlichen oder künstlichen Quellen	<2µm
2. Nebel:	Wassertröpfchen	0,1-2µm
3. Aerosole:	Feste oder flüssige Partikel (natürliche, künstliche Quellen), schwebend in der Atmosphäre	1-10µm; (0,003-0,1µm)

C) Der Begriff " Löß" oder "Löss"

Die genetische Definition des äolischen Sediments beruht primär auf der Korngrößenzusammensetzung (z.B. BRUNNACKER 1980; CEGLA 1969; PÉCSI-DONÁTH 1985; PÉCSI und RICHTER 1996; PEINEMANN und GARLEFF 1981; PYE 1984; THALHEIM 1994; YAALON und DAN 1974).

Die typischen Primärlösse weisen 50 bis 70 Gew.-% an Grobschluff, bis zu 10 Gew.-% Feinst- und Feinsand sowie Ton auf (Pécsi und Richter 1996, S. 36; Peinemann und GarleFF 1981). International wird der Kornbereich von 10 µm bis 50 µm verwendet und damit ein Teil des Mittelschluff-Intervalls einbezogen.

Die Schwankungen im Sand- und Tongehalt sind wichtige Kriterien für die Einteilung von Lössvarianten (z.B. OWEN et al. 1992; PÉCSI und RICHTER 1996; PYE 1984; RENDELL 1989; SCHÖNHALS 1960). Sandlösse weisen 20 bis 30 Gew.-% Mittel- und Feinsand auf. Davon zu unterscheiden sind die grobkörnigen Lössderivate mit Materialbeimengungen von mehr als 2 mm Größe, die zu den umgelagerten oder durchmischten lössähnlichen Bodensedimenten überleiten. Die Verwitterung von Lössen führt zu Lösslehmen. Mineralogisch zeichnen sich Löss und Flugstäube durch hohe Quarzgehalte (40-80 Gew.-%), geringere Anteile an Feldspäten, Calcit und Dolomit sowie durch unterschiedliche Mengen an Ton- und Schwermineralen aus.

3.2 Das System "Gebirge-Relief-Klima"

Die Untersuchungsgebiete liegen in der periglazialen Höhenstufe, die sich von der subalpinen Stufe bis zu den Gletscherflächen der nivalen Stufe erstrecken kann (HöLLERMANN 1964; POSER 1977; TROLL 1944). Die Naturraumausstattung (z.B. Deflationsflächen) und die Reliefund Klimaverhältnisse (z.B. Föhnwinde, Luv-Lee-Effekte) im Gebirge steuern rezent-äolische Erosions- und Akkumulationsprozesse. Dabei verursacht das Mikrorelief höchst variable Verteilungsmuster von äolischen Sedimenten und deren Mächtigkeiten. Die Wechselbeziehungen zwischen Mikrorelief und Depositionsdynamik sind noch immer am schwersten zu fassen (BARTKOWSKI 1973; GILLES und LORENT 1966; GOOSSENS 1988 a-c; OF-FER und GOOSSENS 1995; PYE 1989; ROZYCKI 1967). Wichtige Parameter bei der Staubquantifizierung sind die der Hangmorphologie (Neigung [°] / Inklination [°], Exposition). Besonders die Wölbungstendenz des Hanges (konvex, gestreckt, konkav) bestimmt die Standorte für Sedimentfallen (z.B. Hangmulden, Dolinen, Hangfuß). Dort treten auch große Substratmächtigkeiten und gut entwickelte Böden auf (CREDNER und HÜTTL 1998; HÜTTL 1999). Zusammenfassend ist das äolische Wirkungssystem "Deflation – Transport – Akkumulation" sehr komplex, die Einflussfaktoren vielfältig (Tab. 18).

3.2.1 Orographische Effekte

Der Einfluss von Gebirgen betrifft die Skalen des Makro-, Meso- und Mikroreliefs. Im Makromaßstab fungieren die Alpen als orographisches Hindernis für Wolkenbewegung und Winddynamik. Dadurch entsteht erstens eine Stauwirkung, die an Gebirgsmassiven wie dem Wetterstein- und Karwendelgebirge noch mehr als 2000 m über den Gipfelniveaus wirksam ist (FLIRI 1975; HAUER 1950), zweitens eine vertikale und horizontale Ablenkung von Luftmassen und Winden. Die Verteilung von Bergkämmen, Tälern und Sätteln im Dekameterbereich (Mesorelief) erzeugt dann mikroskalige Strömungsmuster. Erhabene Geländeformen (Berg, Hügel, Gratverlauf) wirken als Strömungshindernisse für aerodynamische Prozesse und Parameter (z.B. Windgeschwindigkeit und -richtung, Turbulenzen). Folgende Effekte spielen für die äolische Dynamik im Gebirge eine besondere Rolle:

A) Luv- und Lee-Effekte

Am Hindernis kommt es an den Lee-Hängen zu einer Reduzierung der Windgeschwindigkeit (CEGLA 1972). Nach der Lehrmeinung in der Lössforschung fördern niedrige Windgeschwindigkeiten von 4-8 m/s die Deposition auf trockenen Oberflächen (z.B. NEUMEISTER 1965; Pye 1984; WOJTANOWICZ und ZINKIEWICZ 1966). Deshalb gelten die Lee-Zonen eines Hindernisses als bevorzugte Sedimentationsbereiche (z.B. ROZYCKI 1967; VAN-MAERCKEGOTTIGNY 1981; WEISE 1983). Je nach Hangkurvatur können auch die Ablagerungsräume an Luvhängen bevorzugt sein (Goossens 1988 a-c; Goossens und OFFER 1993; OFFER und Goossens 1995).

Einflussfaktorei	1	Spezielle Untersuchungen von:
Klima	 Windgeschwindigkeit, -stärke, -häufigkeit Luftmassenturbulenzen Niederschlag (Verteilung, Intensität) 	NEUMEISTER 1965; PYE 1984 CHAMBERLAIN 1967
Relief	 Geländetopographie, Mikrorelief Hangmorphologie Reliefwölbung, Wölbungstendenz, Wölbungsrichtung 	GOOSENS 1988 a-c VANMAERCKE-GOTTIGNY 1981 KUGLER 1974; AG BODEN 1996
Vegetation	 Art und Bedeckungsgrad der Vegetation Oberflächenrauigkeit Auskämmende Wirkung 	BRUNNACKER 1980 HANNOSCHÖCK et al. 1991 PYE 1984
Boden	 Bodenfeuchte Oberflächendurchlässigkeit 	CEGLA 1969, 1972

Tab. 18: Wichtige Einflussfaktoren der äolischen Dynamik.

Tab. 19: Fonnwahrscheinlichkeit am Alpennordrand in Abhangigkeit von Großwetterlagen und Jahreszeit (Daten: 1906-194
--

Gro	ßwetterlagen mit bevorzugter Föhntätigkeit	Föhnwahr	scheinlichke	eit [%]		
41	Hoch über Mitteleuropa		7			
-	Hochdruckbrücke Mitteleuropa von SW nach NE	1.5		12		
-	Regelrechte Westlage, zyklonal			15		
	Trog über Mitteleuropa mit Zentraltief über Mitteleuropa			32		
	Südostlage, antizyklonal			38		
•	Südostlage, zyklonal	39				
•	Südliche Westlage, zyklonal	41				
1	Trog Westeuropa mit Zentraltief über den Britischen Inseln (mit Südwestlagen, zyklonal und antizyklonal)	40				
Aus	gesprochene föhntypische Großwetterlagen	F	öhnwahrsch	neinlichkeit	[%]	
		Frühjahr	Sommer	Herbst	Winter	
- 1	Südliche Westlage, zyklonal	56	19	52	32	
•	Trog ü. Westeuropa + Zentraltief über Mitteleuropa ohne SW-Lagen	71	35	62	44	
	Südostlage, zyklonal	61	20	63	17	

B) Düsen-Effekte

Im Gegensatz zu Erhebungen wirken in Windrichtung orientierte Längstäler und Tiefenlinien als Windkanäle. Sie bündeln den Windstrom und bewirken eine Erhöhung der Windgeschwindigkeit. Tiefe Täler mit steilen Flanken fungieren einerseits als Sedimentfallen, andererseits wird durch Erosionsprozesse am Hang das Material sekundär verlagert und z.B. als Kolluvium akkumuliert (MASON et al. 1999). Im Alpenraum sind besonders die S-N-orientierten Föhngassen zu nennen. Innerhalb der Gebirgsstöcke sind Düseneffekte in langgestreckten Trogtälern (Saalachtal /Berchtesgadener Land, Rein- und Höllental /Wettersteingebirge, Isar- und Hinterautal/Karwendelgebirge) Bestandteil von lokalen Berg- und Talwindsystemen (HAUER 1950).

C) Stau-Effekte

Am Alpennordrand ist die Niederschlagswahrscheinlichkeit im Frühjahr zur Zeit der stärksten Konvektion am größten. Niederschlagsbringend sind die NW- und N-Winde und zwar unabhängig von der Jahreszeit. In Abhängigkeit von der Staubkonzentration und der Wetterlage bewirken Stauwetterlagen *wash-out*. Sie sind bei folgenden Wetterlagen zu erwarten: regelrechte Westlage, zyklonale Nordwestlage, Troglage über Nord- oder Mitteleuropa und Zentraltief über Mitteleuropa (HAUER 1950). Dabei sind die Großwetterlagen mit NW- bis N-Strömungen am wetterwirksamsten.

3.2.2 Föhnwinde

Im Zusammenhang mit der Orographie treten Föhnwinde auf. Diese warmen, trockenen Fallwinde treten an der Alpennordseite z.T. orkanartig als Südföhn auf und gelten als Transportmedium für Saharastaub. Als Leitkanäle fungieren Föhngassen wie z.B. die Täler von Inn, Loisach, Saalach und Salzach sowie im Bereich der Isar, das Tor von Mittenwald. Bei einer Koinzidenz von Südföhn-Lagen und einer erhöhten Scirocco-Tätigkeit in den Wüstengebieten sind Saharastaubfälle über Europa häufig (Götz 1940, 1954; RAPP und NIHLEN 1986; PRODI und FEA 1979).

Die Föhnwirksamkeit ist bei Südostlagen (zyklonal, antizyklonal), Troglagen über West- und Mitteleuropa (eingeschlossen Südwestlagen) und Südlichen Westlagen besonders ausgeprägt. Bei diesen Wetterlagen kommen Föhnwinde bevorzugt im Frühjahr und Herbst vor. Sommer und Winter zeichnen sich hingegen durch geringere Föhnwahrscheinlichkeit aus. Im Sommer und Winter sind SE-Winde häufig an die Hochdruckbrücke über Mitteleuropa (SW nach NE) geknüpft. Die größte Föhnwahrscheinlichkeit (71%) tritt im Frühjahr bei Troglagen über Westeuropa auf, das Minimum bei winterlichen zyklonalen Südostlagen (Tab. 19).

Bei allen genannten Wetterlagen wehen Föhnwinde im Alpenraum unabhängig von der Jahreszeit meist aus S und SE. Seltener bringen Winde aus dem SW-Sektor Föhn (HAUER 1950). Die prozentuale Verteilung der Häufigkeiten von Südwindereignissen an den Stationen Watzmannhaus (1860 m) und Zugspitze (2962 m) zeigt unterschiedliche Sektorenverteilung mit einer Dominanz des SE-Sektors auf der Zugspitze (Tab. 20).

Winde aus SE erreichen generell im Frühjahr und Herbst viel häufiger größere Windstärke (> 6 Beaufort) als in den anderen Jahreszeiten. Die Föhnereignisse auf exponierten Gipfeln (Watzmann, Zugspitze) erreichen sogar extreme Windstärken, die bei über 50% der Fälle mehr als 7 Beaufort (d.h. Windgeschwindigkeiten > 14-17 m/s) zeigen.

3.3 Saharastaub-Ereignisse

Insgesamt gelangen jährlich weltweit rund fünf Milliarden Tonnen Staub- oder Aerosolpartikel in die Atmosphäre. Der Mineralstaub aus den Wüsten hat davon einen Anteil von 1,5 Milliarden Tonnen. Davon entstamTab. 20: Häufigkeit der Windaktivität aus südlichen Richtungen für 2002 (Daten: DWD).

Messstation	Prozentuale Häufigkeit der Windaktivität aus südlichen Richtungen (bezogen auf 100% der gesamten Südrichtungen)						
a new recording to	SE (150°)	S (180°)	SW (210°)				
Watzmannhaus (1820m) Berchtesgadener Alpen	34%	34%	32%				
Zugspitze (2962m) Wettersteingebirge	54 %	28%	18%				

Tab. 21: Depositionsraten von Saharastäuben für den Alpenraum und Mitteleuropa.

Untersuchungsgebiet	Depositionsraten [µg / cm² / d]	Sedimentationsrate [cm / 10ka]	Methode	Autor
Colle Gnifetti (4450m), Schweizer Alpen	Mittelwert: 0,16	0,45	Eisbohrkern (1936-1982)	WAGENBACH und GEIS (1989)
Mont Blanc (Franz. Alpen)	Mittelwert: 0,063(Al) bis 0,18(Ca)	0,18 bis 0,51	Eisbohrkern (1955-1985) Berechnung von Al und Ca-Konzentration	De ANGELIS und GAUDICHET (1991)
06.0309.03.91 Staubfall über England und Frankreich	0,025 nach 4 Tagen Staubfall	0,07	Schneeoberflächen	BÜCHER und DESSENS (1992)
Griechenland (1988-1994)	5,2	14,6	Staubmessung über Regenfänger	MATTSSON und NIHLÈN (1996)
Arktis	0,009 bis 0,038	0,025 bis 0,11	Staub von Schneeoberflä- chen	DARBY et al. (1974)
Verschiedene Staubfälle über Europa	70mm/1000a	70	Staub von Schneeflächen	GOUDIE (1978)

men 60% der Sahara (BÜCHER 1986; SCHÜTZ 2004). Der Staub dieser Ereignisse (sahara dust fall, chute de poussière saharienne) wird regelmäßig mit warmen Luftmassen bis zu 5000 m hoch in der Atmosphäre verteilt. Er gelangt bei Südlagen mit Föhnwinden in den Alpenraum und z.T. bis nach Nordeuropa (FRANZEN et al. 1994; LUNDQVIST und BENGTSSON 1970). Dabei bezeichnet der Begriff "Sahara" die südlichen Gebiete von Marokko, Südwest-Algerien, Tunesien und Lybien sowie Mauritanien, Niger und Tschad. Daneben werden über Europa auch Stäube aus den asiatischen Wüsten verfrachtet (BÜCHER 1988: BÜCHER und DESSENS 1992: DE ANGELIS und GAUDICHET 1991; DESSENS und PHAM VAN DINH 1990; PRODI und FÉA 1978), Der Saharastaub wird besonders auf Schnee- und Gletscherflächen sichtbar. Ebenso sind nasse Depositionen (mud rain, pluie de boue) häufig. Sie sind nach Meinung einiger Bearbeiter für den Alpenraum entscheidend, da trotz hoher Staubfracht in der Atmosphäre die trockene Deposition sehr gering ausfallen kann (DE ANGELIS und GAUDICHET 1991; HELL-MANN und MEINARDIUS 1901; SCHWIKOWSKI et al. 1995; WA-GENBACH 1981). Zur jahreszeitlichen Verteilung der Staubfälle über dem Alpenraum gibt es sehr unterschiedliche Angaben. Meist wird folgende Verteilung angegeben: Maxima Februar/März, April/Mai und Oktober (LITTMANN 1991). Jedoch zeigen Studien an Eisbohrkernen im Mont Blanc-Gebiet gerade im Winter starke Saharastaubtätigkeit (DE ANGELIS und GAUDICHET 1991; LITTMANN 1991; PRODI und FEA 1979).

Da es keine kontinuierliche Registrierung an den Hochgebirgsstationen gibt, fehlt eine verlässliche Zahl über die Häufigkeit von Staubfällen pro Beobachtungszeitraum. Eine Ausnahme stellt das POUSSAH-Projekt (Poussière Saharienne) von Bücher und Dessens (1992) dar, das ein Beobachtungsnetz an den Messstationen der französischen Nationalparks (Alpen, Pyrenäen, Zentralmassiv) unterhält. In den Nord-Pyrenäen wurden 64 Staubereignisse (1983-1989), die sich über 126 Tage erstreckten, gezählt und in nur einem Jahr (1990-1991) sogar 18 Staubfälle registriert (BÜCHER und DESSENS 1992). Allerdings schwanken die Depositionsraten aus der Forschungsliteratur stark in Abhängigkeit von Methode und Messzeitraum. Repräsentativ ist am ehesten der errechnete Mittelwert von 60 µg/cm²/a aus ungestörter Akkumulation im Eisbohrkern (Tab. 21).

Die starken Sahara-Staubfälle im November 2002 sowie am 05.05.2003 führten zu deutlich, rötlichen Staubschichten auf den Gletschern der österreichischen Zentralalpen.

Mit der stärkste Sahara-Staubfall im Alpenraum seit 25 Jahren wurde am 21.02.04 registriert. Ein heftiger Föhnsturm (246 km/h im Berner Oberland) transportierte große Staubmengen aus der Sahara mit Konzentration von 400 mg/m³ Luft heran. Sie führten am bayerischen Alpennordrand zu einer außergewöhnlich starken Lufttrübung. Trotz der hohen Staubkonzentration war die Deposition auf den Schneeflächen der Nordalpen optisch kaum bemerkbar. Im Gegensatz dazu wurde im Grödner Tal (Italien) eine geschlossene Staubschicht registriert. Im Trentino trat heftiger Staubregen auf (mündl. Mitteilung Dipl.-Geogr. T. RAUCH). Eigene Probennahmen im Grödnertal ergaben eine Deposition von 2 g/m² auf Schneeoberflächen.

4 Das Bodeninventar und seine äolische Beeinflussung

4.1 Ergebnisse der Feldbodenkunde

Ausgangsgestein, Vegetationsbedeckung und Relief bedingen unterschiedliche Entwicklungsstadien von Rendzinen sowie Fels- und Skeletthumusböden (O/C). Minerogene Bildungen umfassen Terra fusca-Rendzinen (Ah/Bv-T/Cv) sowie Subtypen der Braunerde (Ah/Bv/C). Auf brekziierten Kalksteinen und Hangschuttdecken werden sogar flach- bis mittelgründige Terrae fuscae kartiert.

Die Feldarbeit liefert wichtige Hinweise für äolisches Fremdsubstrat. Hier ist zum einen der <u>Glimmerreichtum</u> in den Oberböden (Aih, Ah, Of, Oh) von autochthonen Böden zu nennen (Foto 7).

Zum anderen fallen mächtige Braunerden auf, die im gesamten Profil Schluff-, Glimmer- und Quarzreichtum zeigen. Aufgrund dieser Indikatoren erfolgt eine vorläufige Einteilung der Böden in zwei mögliche genetische Gruppen I und II (Tab. 22).

Die kartierten Gebirgsböden sind in die Deutsche Klassifikation meist gut einzuordnen (AG BODEN, 1996). Die vergleichende Einordnung der Subtypen und Varietäten der Rendzina in die internationalen Systeme (FAO 1990, Soil Survey 1990; WRB, ISSS-ISRIC-FAO 1998; 2000) ist oft nur zufriedenstellend (Tab. 23).

Foto 7: Glimmerbruchstücke der Schluff-Fraktion (63 µm bis 2 µm) aus Polsterrendzinen. Das Material ist trocken aus der Feinerde von Oh-Horizonten (0-5 cm) gesiebt.

Problematisch ist auch die genetische Kennung von Residualmaterial, da die Klasse der *Terrae calcis* nicht mehr existiert (WRB 2000). Damit sind Braunerden und Kalkverwitterungslehme gleichbehandelt und z.B. den *Cambisols* zugeordnet. Häufig wird die Terra fusca als "*Chromic Cambisol"* (FAO 1990) bzw. "*very fine Eutrochrept"* (Soil Taxonomy 1990) benannt. Das geforderte Kriterium der Mindestmächtigkeit für Cambisols erschwert zudem die Ansprache der kartierten Nano-Formen (z.B. Nano-Terra fusca). Insgesamt ist nur die Einordnung auf der Ebene der Referenz-Bodengruppe (z.B. *Cambisol*) und der ersten Ebene der Untereinheit (z.B. *Chromic Cambisol*), des diagnostischen Horizonts (z.B. *Chromic, Rhodic*) sinnvoll.

4.1.1 Ausgangsgestein

Die Residualgehalte (Residuum) der Ausgangsgesteine basieren auf der geochemischen Analyse der liegenden

Vorwiegend	Vorwiegend	Vorwiegend			
lithogen-organogen, organogen	minerogen-autochthon	minerogen-äolisch			
 Protorendzina Aih/C Skelett- u. Felshumusbo-	 Braunerde-Rendzina (Ah) / Bv-T/C Terra fusca ähnlicher Boden	 Braunerde über Residualton A/B/IIC-			
den O /C Polsterrendzina Ah/C; O/C	(Ah) /T/Tc/C; (Oh)/T/Tc/C flach- bis mittelgründige Terra fusca Auf Gosaukalken der RA: Braunerden Ah/Bv/C und Subtypen	Profile Subtypen z.B. Braunerde-Podsol			
Äolische Indikatoren im Geländ Humose Oberbodenhorizonte: Glimmerreichtum, Quarz (Al Schluff- und Feinsanddomin Hypothese:	de: lochthoner Mineralbestand) anz Rezenter Flugstaub	Mineralische Unterbodenhorizonte: - Glimmerreichtum, Quarz - Lößlehm-Charakter, kolluvial - flächenhafte Verbreitung, B-Horizonte Entstehung auf äolischen Substraten			
Vorläufige Einteilung:	Gruppe I: Autochthone Böden (rezent-äolisch beeinflusst)	Gruppe II: Allochthone Böden (nicht rezent-äolische Herkunft)			

Tab. 22: Geländebefunde und Vorgehensweise zur genetischen Einordnung.

Tab. 23: Klassifikation der Hochgebirgsböden (Überblick).

Deutsche Klassifikation (KUBIENA 1953; AG BODEN 1996)	Horizontierung (AG BODEN 1996)	Mögliche Einord- nung nach FAO (1990)	Horizontlerung (FAO 1990; Soil Sur- vev 1990)	Mögliche Zuordnung in die Word Reference Base WRB (2000)
Carbonat-Lockersyrosem	AiCv / IC	Dystic oder Eutric Regosol	A-C	Regosol
Felshumusboden	Oh /mC	Folic Histosol	0-R	Histosol
 a) Polsterrendzina b) Pech-, Tangelrendzina c) Tangelrendzina d) Polsterrendzina 	Oh /mC Of/Oh /mC L/Of/Oh /mC Oh /mC	Folic Histosol Folic Histosol Folic Histosol Folic Histosol	0-R 0-R 0-R 0-R	a) folic b) histic c) dystric d) eutric
Skeletthumusboden	Oh / ICv	Folic Histosol	A-C	Folic Histosol / Humic Leptosol
Syrosem-Rendzina	Aih/mC Aih/ ICv	Eutric Leptosol	A-C	Leptosol a) humic b) eutric Regosol, humic
Initiale Polsterrendzina	Ah / IC Ah / mC	Mollic Leptosol	0-C	Rendzic Leptosol
Typische Polsterrendzina a) auf kalkhaltiger Moräne	Oh / ICv Oh / mC a) Oh / ICc	Folic Histosol Rendzic Leptosol	0-C	Folic Histosol Humic Leptosol a) Calci-humic Regosol
Reife Polsterrendzina Rendzina-Terra fusca	Oh /Oh+T / (T) /C Ah/Ah+T / (T) / C	? ?	0 - 0C - C 0 - R 0-0B-2B-2C	Eutric Cambisol / folic O Eutric Cambisol / folic O
Braunerde über Terra fusca	(Ah) / Bv /II (T) /C	Cambic over Chro- mic Cambisol	O-OB-2B-2R O – OB-2Bt-2C (A)-Bw-2Bt-2C	Cambisol dystric oder eutric
Braunerde		Cambisol	A-B-C	Luvisole
Braunerde über Terra fusca, leicht pseudovergleyt / podsoliert	(Ahe) / Bvs /II (Sd-T) / C	Cambic over Chro- mic Cambisol with andic or gleyic features	A-AE-B-C 2 zur Kennzeichnung von Schichtung	Umbrisole

C-Horizonte, die von jedem Bodenprofil beprobt wurden (Tab. 24). Die Hauptgesteine (Wetterstein-, Muschelund Dachsteinkalk) zeigen geringe Residualgehalte (2% bis 7%) mit größeren Schwankungen bei den Varietäten (rosa geädert bis rot) des Dachsteinkalks. Die Residuen steigen (> 10%) mit dem Grad der tektonischen Zerrüttung, die anhand der Kluftdichte (Anzahl der Klüfte pro m² Fels) bestimmt wurde und zu Brekzien führt. Die Brekzien sind mit roten, eisenreichen Tonfüllungen verheilt (Foto 4; Kap. 1.4.1) und fördern die Bildung der kräftig gefärbten Terra fusca-Rendzinen. Diese Böden sind auch in der Östlichen Karwendelgrube auf residualreichen (Mittel: 14%) Reichenhaller Schichten typisch (z.B. Profil ÖK_P5 bis 7). Die höchsten Residualgehalte (Mittelwert: 62,8%) liefern die Geschiebelehmreste (z.B. RA_P19) auf der Reiteralpe sowie rote Verwitterungsprodukte der jurazeitlichen Bedeckung, der sog. "Bolus" (GÜMBEL 1861 in: GILLITZER 1921, S. 179).

4.1.2 Solummächtigkeit

Die Einzelwerte der T-Horizonte von Profilen ähnlicher Standorte (Typen: reife Polsterrendzina, Terra fusca-Rendzina, mittelgründige Terra fusca) sind für jeden Substrattyp gemittelt und gegenübergestellt (Tab. 25).

Im Falle der sehr reinen Ausgangsgesteine sind Rendzinen auf Lockersubstrat (Schutt, Scherbenkarst, Lokalmoräne) deutlich mächtiger. Dies ist mit den Kalkabtragsraten als ein Maß für die Substratverwitterung konform. Sie betragen bei vergleichbaren Niederschlagsintensitäten auf Felsflächen nur 18 µm/a bis 35 µm/a, im unbewachsenen Schutt je nach Schuttmächtigkeit bereits zwischen 46 µm/a und 65 µm/a und im bewachsenen Schutt sogar 45 µm/a bis 89 µm/a (Hüttl 1999; SCHLOTT 1997).

Auf Felsstandorten (mC-Horizonte) ohne kolluviale oder erosive Prägung entscheidet die Gesteinszusammensetzung. Auf reinen Kalksteinen sind nur geringmächtige Residualbänder (Mittelwert: 2 cm bis 5 cm) vorhanden, während die T-Horizonte (Mittelwert: 10 cm bis 25 cm) auf unreinen Kalken und Brekzien deutlich mächtiger sind. Diese Steuerung durch das Ausgangsgestein wird auch durch die rechnerische Verknüpfung der Messwerte der T-Horizonte [cm] mit den Residualgehalten [%] ihrer C-Horizonte unterstützt (Abb. 3). Tab. 24: Geochemie der Ausgangsgesteine.

Gesteine im UG	Hauptbes (Methode	standteile e: nassche	im Gestein emisch)	1)	Hauptelemente im Residuum (Methode: RFA)			
	CaCO ₃ [%]	MgCO ₃ [%]	Residuum [%]	Residuum Summe [%] [%]		Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	
Zugspitzplatt:	1		1.00	1.1.1.1	1.			
Wettersteinkalk	96,5	2,0	2,1	100,6	< 0,10	< 0,10	0,07	
Westl.Karwendelgrube:			1.1	10.00		1.1.1.1.1.1.1.1		
Muschelkalk	93,9	1,3	5,2	100,4	1,0	0,22	0,12	
Östl. Karwendelgrube:				11 22 31		C		
Reichenhaller Kalk	95,4	0,7	3,7	99,8	0,77	0,23	0,17	
Reichenhaller Brekzie	69,3	14,9	14,0	98,2	2,41 2)	5,68 2)	1,65 2)	
Reiteralpe:								
Dachsteinkalk, weiß	91,9	1,4	6,8	100,0	< 0,10	< 0,10	< 0,05	
Dachsteinkalk, rotgeädert	88,9	8,1	2,1	99,1	1,11	0,76	0,31	
Dachsteinkalk, rot bis rosa	89,3	0,6	10,0	99,8	0,54	0,33	0,14	
Dachsteinkalk rot, brekziiert	88,1	0,9	11,1	100,1	1,30	4,87	1,74	
Gosaukalk, z.T. brekziiert	87,3	5,5	7,2	99,9	0,16	0,14	0,07	
Jurazeitliche Deckenreste?: 3)							*******	
 Geschieberest Jura? in Lokalmoräne, Große Doline 1 	96,9	1,0	2,1	100,0	2,12	1,11	0,98	
- Resten von Jura?, Geschie-	35.1	2,1	62,8	100.0	22.1	6,0	4.0	
belehm mit Lokalmoräne Do- linenfeld 2					Illit 60%, Kaolinit 4%, Chlorit 32% 4)			
Nationalpark Berchtesgaden: 5)								
Roter Liaskalk, ungestört	81	8	11	100	Chlorit, Illit, M	uskovit, Feldsp	at, Qz 6)	
Roter Liaskalk, schwach gestört	78	7	18	103	Qz, Illit, Muske	ovit, Chl., Kaoli	nit, Feldspat	
Roter Liaskalk, stark gestört	72	0	28	100	Illit, Muskovit,	Chlorit, Qz, Fe	Idspat	

2) RFA nur für Probe rhB 2

3) Einzelanalysen, DUFFY (2003, S.28 und Anhang 2)

4) Rel.-%, Methode: RDA

5) Mittelwerte nach LANGENSCHEIDT (1995), S. 10-12; keine Angabe zu Hauptelementverteilung

6) Halbquantitative Bestimmung der silikatischen Leichtminerale (RDA) nach LANGENSCHEIDT 1995, S. 102; Reihenfolge gibt Rangfolge an; Qz = Quarz; Chl. = Chlorit

Tab. 25: Solummächtigkeit der T-Horizonte von autochthonen Mineralböden.

Gesteine der Untersuchungsgebiete	Mächtigkeit der T-Horizonte [cm] auf den Substrattypen 1):											
	Kompa	akter Fels	(mCn)	Loc	kersubsi (ICv)	rat	Lokalmoräne (ICv)					
Wettersteinkalk	Min. 0,3	Max. 5	Mittel 2	Min. 2	Max. 8	Mittel 5	Min. 5	Max. 25	Mittel 18			
Muschelkalk	2	8	4	2	5	4	2220		_ 2)			
Reichenhaller Kalk	1	5	3	2	9	5	_ 2					
Reichenhaller Brekzie	5	18	12	8	20	15			_ 2)			
Dachsteinkalk, weiß	1	10	5	1	9	5			_ 2)			
Dachsteinkalk, rotgeädert	3	20	15	4	18	15			- 2)			
Dachsteinkalk, rot bis rosa	4	22	16	3	15	12			_ 2)			
Dachsteinkalk, rot und brekziiert	10	30	25	10	35	28			- 2)			
Gosaukalk, z.T. brekziiert	3	15	10			_ 2)			_ 2)			
Kreide- u. jurazeitliche Deckenreste			- 2)			_ 2)	25	110	59			

 Mittelwerte: Basis sind je 10 Einzelprofilen pro Bodentyp und Substrattyp. Die Auswahl der Einzelprofile betrifft keine Akkumulationslagen wie z.B. Dolinen oder Karrenfüllungen.

2) Zeilen ohne Messwerte: Der Substrattyp tritt in dieser Kombination nicht auf .

4.1.3 Bodenfarbe

An der Bodenfärbung sind üblicherweise folgende Oxide beteiligt (JASMUND und LAGALY (Hrsg.) 1990; CHILDS 1992; McKeague und Day 1966):

- Goethit, gelbbraun (7.5 YR bis 2.5 Y)
- Hämatit, rot (5 R bis 2.5 YR)
- Lepidokrokit, orangefarben (5 YR bis 7.5 YR)
- Ferrihydrite (amorphe, wasserhaltige Eisen-(III)oxide), rotbraun (5 YR - 7.5 YR).

Je nach Untersuchungsgebiet zeigen die T-Horizonte Farben von gelbbraun, gelb, gelbrot und rot (Spektren: YR, Y), die in vielen Fällen mit den Farbvarietäten der Ausgangsgesteine und ihrer Residuen übereinstimmen. Dies wird als Beleg für den autochthonen Charakter der "bunten" Bodenhorizonte gewertet. Auffällig liegen die Braunerden auf Decksubstraten im gelb-braunen Spektrum (Farbe 10 YR; 10 YR 6-7/3-4), das häufig Primärlösse und ockergelbe Lößlehme auszeichnet (Pécsi und RICHTER 1996) (Tab. 26).

Rotfärbung:

Auf der Reiteralpe sind rotgefärbte Böden (2,5 YR) weit verbreitet. Da die Hochfläche zu den tertiären Resten der Raxlandschaft zählt, muss die Rotfärbung als ein möglicher paläoklimatischer Zeiger in Betracht gezogen werden (BRONGER und KALK 1979; FRANZ und SOLAR 1961; MORESI und MONGELLI 1988; SMOLIKOVA und LOZEK 1962).

Der Farbvergleich zwischen T-Horizonten und den Residuen ihrer Ausgangsgesteine zeigt erstens hinsichtlich des "hue" (z.B. 5 YR) Übereinstimmung. Zweitens sind die Gehalte der pedogenen Oxide (Al_2O_3 und Fe_2O_3) in den tonreichen Residuen der roten, brekziierten Kalksteine deutlich erhöht (Tab. 27).

Interpretation:

Für die meisten Fälle der Bodenproben ist lithogene Rotfärbung bzw. "Entcarbonatisierungsröte" (MEYER 1979, S. 705) wahrscheinlich. Diese Rubifizierung von T-Horizonten ist ein pedogenetischer Teilprozess und wird während der Kalklösung dann intensiviert, wenn Eisen im Ausgangsgestein karbonatisch gebunden ist (z.B. Ankerit, Siderit).

Dies trifft für alle triassischen Kalksteine der vorliegenden Arbeit zu. Ebenso ist die stark färbende Wirkung der amorphen Ferrihydrite anzuführen (z.B. CHILDS 1992; SCHWERTMANN 1985). Diese lithogenen Ursachen der Bodenfarbe betont auch REHFUESS (1981, S. 52): "Die typische *Terra fusca…* besitzt… "sattbraune, je nach Muttergestein teils mehr gelblich oder mehr rot getönte Horizonte".

Trotzdem könnte die außergewöhnliche Rubifizierung (hue 2,5 YR) von Profilen in Karsthohlräumen (RA_P 2, P7, P12) auch ein Zeiger für Paläoklima sein. Hierfür sprechen die auffällig hohen Gehalte an Eisen (7% bis 10%), Al₂O₃ (17% bis 23%) und der detektierte Gibbsit. Dieser kann im <u>subtropischen</u> Verwitterungsmilieu durch die Desilifizierung von Zwei- und Dreischicht-Tonmineralen entstehen. In diesem Fall wäre die Rotfärbung der Karrenfüllung RA_P2 paläoklimatisch zu deuten (KUHLEMANN et al. 1999). Tab. 26: Bodenfarben der braunen Mineralböden.

Gebiet	Autochi T-Horizo	thone Mineralböden (Gruppe I) onte	Allochthone Mineralböden (Gruppe II) B-Horizonte					
	hue	Farbansprache (KIC 1990) dry color	hue	Farbansprache (KIC 1990) dry color				
Zugspitzplatt	10 YR 7.5 YR 2 5 Y	very dark grayish brown; dark brown very pale brown brown pale vellow	10 YR 7.5 YR	dark yellowish brown; yellowish brown; yellow brown; strong brown				
Karwendelgrube	2.5 Y	pale yellow; grayish brown	10 YR	brown, pale brown, dark yellowish brown				
Reiteralpe	10 YR 7.5 YR 2.5 YR	very pale brown light brown yellowish red; red; reddish yellow; dark brown; light yellowish brown	10 YR	pale brown; yellow; brownish yellow; light yellowish brown				

Tab. 27: Rotfärbung und Geochemie.

in 1).					
4			Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	
-	0 YR 8/1	very pale brown	10 YR 7/4	<0,10	<0,05
h white 7	',5 YR 8/2	light yellowish brown	10 YR 6/4	0,10	<0,05
h white 7	,5 YR 8/2	light brown	prown 7,5 YR 6/4		0,14
5	5 YR 8/4	dark brown	7,5 YR 3/3	1,18	0,48
h yellow 5	i YR 6/6	reddish yellow	5 YR 6/8	1,23	0,89
h yellow 5	5 YR 7/6	yellowish red	5 YR 5/6	4,87	1,74
light red 2,5 YR		red	2,5YR 4/6	3,54	1,56
	h white 7 h white 7 sh yellow 5 sh yellow 5 ed 2	h white 7,5 YR 8/2 h white 7,5 YR 8/2 5 YR 8/4 sh yellow 5 YR 6/6 sh yellow 5 YR 7/6 ed 2,5 YR 7/6	h white 7,5 YR 8/2 light yellowish brown h white 7,5 YR 8/2 light brown 5 YR 8/4 dark brown sh yellow 5 YR 6/6 reddish yellow sh yellow 5 YR 7/6 yellowish red ed 2,5 YR 7/6 red	h white 7,5 YR 8/2 light yellowish 10 YR 6/4 brown 7,5 YR 8/2 light brown 7,5 YR 6/4 5 YR 8/4 dark brown 7,5 YR 3/3 sh yellow 5 YR 6/6 reddish yellow 5 YR 6/8 sh yellow 5 YR 7/6 yellowish red 5 YR 5/6 ed 2,5 YR 7/6 red 2,5YR 4/6	h white 7,5 YR 8/2 light yellowish brown 10 YR 6/4 0,10 h white 7,5 YR 8/2 light brown 7,5 YR 6/4 0,76 5 YR 8/4 dark brown 7,5 YR 3/3 1,18 sh yellow 5 YR 6/6 reddish yellow 5 YR 6/8 1,23 sh yellow 5 YR 7/6 yellowish red 5 YR 5/6 4,87 ed 2,5 YR 7/6 red 2,5YR 4/6 3,54

Bestimmung der Oxide: Methode RFA

Aber auch im <u>außertropischen</u> Verwitterungsmilieu führt die hydrolytische Verwitterung von Al-haltigen Feldspäten, Foiden und Tonmineralen zu Gibbsit (SCHEFFER et al. 1989, S. 42). In diesem Fall würde der Gibbsit in den roten T-Horizonten (z.B. RA_P7) aus der autochthonen Gesteinsverwitterung stammen.

Diese Möglichkeit ist besonders für die Profile im Bereich der "schwimmenden Scherben" im Dachsteinkalk anzunehmen, da die notwendigen Al-haltigen Feldspäte (Albit, Kalifeldspäte) Bestandteil der Residuen sind (LAN-GENSCHEIDT 1995).

4.1.4 Relief und Vegetation

Neben den primären Gesteins- und Substrateigenschaften hängt die Entwicklungstiefe der autochthonen Böden stark von den Erosions- und Akkumulationslagen im Karstrelief ab. Auf der Reiteralpe sind hier die Großdolinen (Längen bis zu 250 m, Breiten bis zu 100 m) als Einzelformen der Dolinenfelder im Bereich von Reitertrett, Saugasse, Schwegelalm und Wachterlsteig zu nennen. Dort liegen seltene Bodenkomplexe, die einer Parabraunerde über reliktischem Kalkverwitterungslehm entsprechen (DUFFY 2003; Profil RA_P18/GD 1).

Der Zusammenhang zwischen Bodenentwicklung und Pflanzensukzession ist im Wetterstein- und Karwendelgebirge aufgrund der großen Höhenerstreckung besonders deutlich (CREDNER et al. 1998; ZÖTTL 1950, 1966; SAITNER und PFADENHAUER 1989; SCHLOTT 1997).

Der Sukzessionsstatus beeinflusst aber auch die rezente Staubdeposition. Dies verdeutlicht der rechnerische Zusammenhang zwischen den Schluffgehalten (63 µm bis 2 µm) in den glimmerreichen Oberbodenhorizonten und dem Bedeckungsgrad der Vegetation. Dieser meint die kartierte Vegetationsbedeckung [%] in unmittelbarer Umgebung des Bodenprofils, das im Zentrum einer Rasterfläche von 4 m² liegt (Abb. 4).

Abb. 4: Linearer Zusammenhang zwischen dem Bedeckungsgrad [%] der Vegetation und dem Schluff (silt)-gehalt in den Oberflächenhorizonten, inklusive der Ah-Horizonte der allochthonen Braunerden (Zugspitzplatt).

4.2 Ergebnisse der Staubuntersuchungen (Eigenschaften)

Es sind 35 Staubproben lichtmikroskopisch untersucht (25 von Schneeoberflächen, 10 aus Regenniederschlag), wovon ein Teil der Voruntersuchung "Zugspitzplatt" entstammt (OLSZEWSKY 2002).

4.2.1 Lichtmikroskopie

A) Organisches Material (Auflichtmikroskopie)

Das untersuchte Staubmaterial weist folgende drei Hauptbestandteile auf:

- organische Substanz (> 2 mm), Makroreste
- organische Feinsubstanz (<2 mm), Mikroreste, "Humus"
- mineralische Substanz (< 2 mm) unterschiedlicher Korngröße und Kornhäufigkeit

Die Detailansprache (Schnee- und Regenproben) ergibt als Bestandteile:

- Zellgewebe, Pflanzenhaare, unregelmäßig geformte braune Humuskolloide
- Reste von Diatomeen
- eingebettete mineralische K
 örner (z.B. Quarz, Calzit) und Glimmerpl
 ättchen
- Gewebefasern industrieller bzw. anthropogener Herkunft (Ski- und Wandertourismus)
- Pilzfäden, Bakterien und Sporen

Darüber hinaus dokumentieren die Schneeproben verbackene Reste bzw. Ausscheidungsprodukte der roten Schneealge (Haematococcus pluvialis). Für die Stäube aus Regenniederschlag sind Kadaver oder Exuvien (Beine, Flügel, Mandibeln, Chitinpanzerreste) von Hochgebirgsinsekten typisch, wie z.B. Schwebfliegen (Svaeva pyrastri, Volucella pellucens, Pipiza quadrimaculata), Mistbienen (Eristalis stenax) und Rinderbremsen (Tabanus sedeticus). Ebenso häufig sind Pflanzenreste unterschiedlicher Größe (Blatt- und Stängelreste, Pflanzenhaare, Samenkapseln) folgender Hochgebirgspflanzen (alpin bis subnival):

- Polstersegge (Carex firma)
- Silberwurz (Dryas octopetala)
- Berglöwenzahn (Leontodontetum sp.)
- Traubensteinbrech (Saxifraga paniculata)
- Alpenmaßliebchen (Aster bellidiastum)
- Alpenaster (Aster alpinus).

Typisch sind auch Reste der folgenden Arten aus der Bergwaldstufe (montan bis subalpin):

- Weißtanne (Abies alba)
- Bergahorn (Acer pseudoplatanus)
- Rotbuche (Fagus sylvatica)
- Legföhre (Pinus mugo)
- Behaarte Alpenrose (Rhododendron hirsutum)
- Rostrote Alpenrose (Rhododendron ferrugineum).

B) Mineralisches Material (Durchlichtmikroskopie)

Die Bestimmung mit Hilfe von Mikrosieben hat folgende Kornintervalle ergeben:

- Intervall 1 (125 µm bis 63 µm) = Feinstsand
- Intervall 2 (63 µm bis 53 µm) = Grobschluff
- Intervall 3 (40 µm bis 20 µm) = Grobschluff

- Intervall 4 (20 µm bis 10 µm) = Mittelschluff

- Intervall 5 (<10 µm)

= Mittel- bis Feinschluff ("Feinstkornintervall")

Calzit und Dolomit: Sie sind durch typische Doppelbrechung in allen Proben identifizierbar, jedoch oft nicht voneinander unterscheidbar. Die Proben aus der Karwendelgrube zeigen eindeutig Calzit (meist Feinstkornbereich < 10 µm). Die Minerale weisen deutliche Beanspruchung durch chemische und physikalische Verwitterung auf. Die Teilchen sind oft trüb und scharfkantig. Nur z.T. findet man Spalt-Rhomboeder. Chemisch angewitterte Formen sind faserig und von den Spalten her angelöst.

Glimmer: Die Glimmerplättchen konzentrieren sich in den Fraktionen Grobschluff und Feinstsand (Intervall 1 + 2). In Stäuben aus den Gebieten ZP und WKG herrschen Biotite vor. Sie sind häufig intensiv gebleicht, unregelmäßig in ihren Umrissen und randlich aufgelöst. Skelettartige Formen mit deutlich pseudohexagonaler Symmetrie zeugen von intensivem Glimmerabbau entlang von Spaltrissen.

Es treten alle Stadien eines intensiven Biotitabbaus auf, der von der initialen Randzerfransung bis hin zum vollständigen Zerfall in stängelige bis prismatische Bruchstücke geht. Hingegen sind frische, unverwitterte Biotitplättchen selten. Muskovit nimmt in den Proben der Gebiete ZP und WKG eine untergeordnete Rolle ein und ist meist stark korrodiert.

Im Gegensatz dazu zeigen die Proben der RA mehr Muskovit, der in den L-, Of- und Oh-Horizonten bereits makroskopisch erkennbar ist.

Quarz: Der trigonale Quarz zeigt sechsseitige Prismen mit pyramidalem Abschluss sowie auf den Längsflächen die unverkennbare Querstreifung.

Quarzgruppe I: Sie bezeichnet Körner mit unterschiedlichem Rundungsgrad (Dominanz: 63 µm bis 20 µm; 2. Häufigkeit < 20 µm). Besonders in der WKG treten in den Schneeproben vorwiegend wohlgerundete Quarzkörner von gelblicher Farbe auf (< 20 µm). Sonst sind sie klar, z.T. aber auch durch unregelmäßige Mikrorisse getrübt und dann grau bis milchig weiß.

Häufig tragen sie Eisenoxid-Beläge auf den Oberflächen, während Fremdmineraleinschlüsse sehr selten sind. Starke Zurundung und Eisenbeläge (Stichwort: Wüstenlack) treten oft gemeinsam auf.

Quarzgruppe II: Diese Feinstfraktion (≤ 20 µm) zeigt scharfkantige, spröde Bruchfazies (muschelig bis splittrig) und nur sehr selten Oberflächenüberzüge. Die frischen Bruchflächen weisen auf jüngste Entstehung hin. Ursache ist meist der Prozess der Saltation bei der Windverfrachtung (BAGNOLD 1941; GILETTE et al. 1974; Pye 1987; Shao et al. 1993). Bei mineralogischer Übereinstimmung ist auch der Eintrag aus näherer Umgebung dokumentiert.

Feldspäte: Oft fallen Feldspäte durch ihre vollkommene Spaltbarkeit auf. Sie sind wenig verwittert und nur selten mit Quarz verwachsen. Die RDA zeigt für die Zugspitzproben eine klare Identifikation von Orthoklas (OLSZEWSкү 2002). In den anderen Gebieten wurden ebenso Plagioklase, vor allem Albit gefunden.

Chlorit: Er tritt mikroskopisch nur in der WKG in zwei Proben aus Neuschnee nach ausgeprägter Südströmung auf. Der primäre Chlorit zeigt aufgeschuppte Plättchen im Feinstkornbereich (< 10 µm). Schließlich sind in der Kornfraktion hochlichtbrechende, längsgestreckte bis ovale Minerale (vermutlich Zirkone) sowie massenhaft Tonminerale (< 20 µm) vorhanden. Die genaue Ansprache erfolgt mit Hilfe der Schwermineralbzw. Röntgenanalyse (Kap. 4.2.2).

C) Kornhäufigkeitsintervalle der Minerale

Die Häufigkeitsverteilung der Korngrößen der Minerale wird als Kriterium für die Transportstrecke und somit für die Zuordnung von Liefergebieten verwendet.

Meist treten die Minerale in der Schluff-Fraktion (63 µm bis 20 µm) auf, mit einer zweiten Häufigkeit im Mittelschluff (20 µm bis 6,3 µm).

Glimmer und z.T., die Quarzgruppe I zeigen ein Maximum im Grobschluff (bes. 63 µm bis 53 µm). In der zweiten Häufigkeit tritt Glimmer in der Feinstsand-Fraktion (63 µm bis 125 µm) dazu.

Die Quarzgruppe II mit scharfkantiger Bruchfazies, Feldspäte und Calzit (eckig, frisch) dominieren den Feinstkornbereich < 20 µm.

Das gilt auch für Quarzgruppe I, die im zweiten Maximum ebenfalls Korngrößen < 20 µm zeigt. Calzit tritt zudem auch verstärkt im Mittelschluff-Bereich (20 µm bis 6.3 µm) auf. Schließlich findet man in allen Proben massenhaft Ton- und Schwerminerale im Feinstkornbereich < 10 µm. (Tab 28)

Interpretation

Das Staubmaterial aus Neuschneeproben wird dem Ferntransport zugeordnet, da bei Strecken von mehreren 100 km tonmineralreiches Material der Größe < 16 µm erzeugt wird (PYE 1989, S. 121). Damit sind Calzit und Feldspäte (< 20 µm) in diesen Proben ebenso ferntransportiert.

Gröbere Klasten (> 20 µm) in den Stäuben aus der abbauenden Schneedecke sowie im Staub aus Regenniederschlag deuten auf kürzere Transportstrecken. Frische Biotite und Glimmer weisen auf nähere Gebiete. wie z.B. die kristallinen Zentralalpen.

Das Überwiegen der Schwerminerale in der Fraktion < 10 µm in den Regenproben wird mit dem primären Verwitterungsstatus der Gesteinsserien in den Liefergebieten erklärt. Auch ist eine verstärkte Aufbereitung durch sekundären Transport innerhalb der Liefergebiete (z.B. fluvial, äolisch) in Form von Gesteinsabrieb in Betracht zu ziehen.

In diesen Fällen ist die Korngröße alleine noch kein eindeutiger marker für die Transportstrecke, sondern braucht den Bezug zur Mineralkornverteilung (BAGNOLD 1941; GANOR 1991; GRAEDEL und FRANEY 1989). Im zusammenfassenden Vergleich zeigen sich große Ähnlichkeiten mit anderen Analysedaten, besonders von Saharastäuben (Tab. 29).

Tab. 28: Häufigkeitsintervalle der Minerale in Stäuben von Schneeoberflächen.

Phase des Sch	needeckenaufbaus (Winter: Okt. bis März)	Häufigkeitsintervall [µm]
Mineralgehalt	Calzit, Dolomit	< 10; < 20
	Glimmer (Biotit, Muskovit) in allen Stadien des Glimmerabbaus	63 - 20; < 20
	Quarzgruppe I: gerundete Quarze mit Eisenoxidbelägen, gelb, z.T. milchig weiß bis grau, meist klar, z.T. mit Mikrorissen getrübt	63 - 20; < 20
	Quarzgruppe II: eckige frische Bruchfazies ohne Oberflächenüberzüge	≤ 20
	Feldspäte: Orthoklas und Albit wenig verwittert, selten mit Quarz verwachsen	≤ 20
	Primärer Chlorit und Spuren von Hämatit Tonminerale (Gibbsit, Kaolinit, Illit)	<10
	Schwerminerale (bes. Zirkon, Rutil, Turmalin, Hornblende)	100 - 250
Organisches Material	Bakterien, Sporen, Pilzhyphen, Pflanzenhaarreste, Diatomeen, braune Hu- muskolloide	< 2000
Phase des Sch	needeckenabbaus (Frühjahr: Mai bis Juli)	Häufigkeitsintervall [µm]
Mineralgehalt	Calzit, Orthoklas Glimmer (frische Biotitstücke), frische braune/grüne Hornblende Quarzgruppe I und II	20 - 6,3 125 - 63; 63- 20
	Tonminerale (Illite, Kaolinit) Schwerminerale (bes. Granat, Staurolith, Disthen, Epidot-Zoisit-Gruppe)	< 20 100 - 250
Organisches Material	Hochgebirgspflanzen (alpin bis subnival) Baumarten aus der Bergwaldstufe (montan bis subalpin) Kadaverreste von Hochgebirgsinsekten	> 2000
	Pollen von Gebirgspflanzen (Kalk- u. Zentralalpen) Pflanzenhaare, Bakterien, Sporen, Pilzhyphen rote Schneealge (<i>Haematococcus pluvialis</i>) Diatomeenreste	< 2000

Tab. 29: Korngrößen von Saharastäuben auf Schneeoberflächen in den Alpen.

Lokalität der Probe	Mittlere Kornfraktion	Art der Probe	Untersuchung
Ostalpen, verschiedene Stellen	30 - 1	Staub der Schneeoberfläche	BECKE 1901
Davos, Schweizer Alpen	5-3	Staub der Schneeoberfläche	GLAWION 1939
Hoch-Pyrenäen/Frankreich	12-3	Staub der Schneeoberfläche	BÜCHER 1986
Colle Gnifetti/Schweizer Alpen	20 - 0,8	Staublage in Gletschereis und Schnee	WAGENBACH und GEIS 1989
Jungfraujoch/Schweizer Alpen	16 – 0,06	Staublage im Gletschereis	SCHWIKOWSKI et al. 1995;TSCHIERSCH et al. 1990
Mont Blanc, Frankreich	10 – 5	Staublage in Gletschereis und Schnee	De ANGELIS und GAUDICHET 1991
Monte Rosa, Schweiz	20-5	Staublage im Gletschereis	WEISSHAAR et al. 1999
Nördliche Kalkalpen: - alle Minerale - gerundete Quarze, Calzit - Feldspäte - Tonminerale	20 – 6,3 <20 <10 <10	Staub von Schneeoberflä- chen	Diese Arbeit

4.2.2 Mineralanalysen

A) Schwermineralspektren

Die Identifizierung von Schwermineralen (Methode RAST 1991) wird an drei Referenzproben vorgestellt:

Referenzprobe 1: Bräunlicher (10 YR 3/2) Staub von Schneeoberflächen (30.05.03)

Referenzprobe 2: Graues Sediment auf Altschneeresten (31.07.02) Referenzprobe 3: Staub aus Aih-Horizonten, trocken als Feinerde abgesiebt

Referenzprobe 1: Es überwiegen eisenreiche Glieder der Epidot-Zoisitgruppe, Hornblende und Granat, der gegenüber mechanischem Transport sehr widerstandsfähig ist.

Auffällig ist Staurolith, ein Mineral der mesozonalen Regionalmetamorphose.

Tab. 30: Gesamt- und Restspektrum der Schwerminerale von Staub (Referenzprobe 1).

			G	esamt	spektru	m (Korn	zahl- %	; Frakt	ion 0,1-(),25mm		
	G	Z	T	R	Ap	St	Di	And	Hbl	Ep+Zo	Sonstige	Kornsumme
Referenzprobe 1	19	1	3	0	3	13	2	0	31	27	1	134 1)
		Res	stspek	trum o	hne Gra	anat (be	zogen a	uf 100%); Frakti	on 0,1-0,25	mm	
		Z	Т	R	Ap	St	Di	And	Hbl	Ep+Zo	Sonstige	Kornsumme
Referenzprobe 1		1	4	0	4	16	3	0	39	33	1	108 1)
G = Granat; Z = Z Andalusit; Hbl = H 1) Beachte schled	irkon ornbl htere	(+ Xe ende Stati	enotim ; Ep+Z stik we	+ Mo o = Ep	nazit), 1 bidote (eringer	r = Turn + Zoisit Kornpo	nalin; R + Klinoz pulation	= Rutil; :oisit + fe !	Ap = Ap einkörnig	atit; St = St je Aggregat	aurolith; Di = te von Pumpe	Disthen, And = llyit)

Tab. 31: Gesamt- und Restspektrum der Schwerminerale von Staub (Probe KG_P11).

		G	esam	tspekt	trum (K	ornzahl	- %);	Fraktion	0,1mm-0),25mm		
Probe	G	Ζ	T	R	Ap	St	Di	And	Hbl	Ep+Zo	Sonstige	Kornsumme
KG_P11/1 Aih 0-2cm	29	3	0	0	0	6	0	0	32	29	0	31 1)
	Res	tspek	trum	ohne	Granat	(bezog	en auf	100%); F	raktion (),1mm-0,25	mm	
		Z	Т	R	Ap	St	Di	And	Hbl	Ep+Zo	Sonstige	Kornsumme
KG_P11/1 Aih 0-2cm	12	5	0	0	0	9	0	0	45	41	0	22 1)
G = Granat; Z = Zirkor Andalusit; Hbl = Hornt 1) Beachte schlechter	n (+ Xo blende e Stat	enotir ; Ep+ istik v	n + M Zo = veger	lonazi Epido gerir	t), T = t (+ Zo iger Ko	Turmali isit + Kl mpopu	n; R = F inozois lation!	Rutil; Ap it + feinko	= Apatit; örnige A	St = Stauro ggregate vo	olith; Di = Dis on Pumpellyi	sthen, And = t)

Die Häufigkeit der extrem Stabilen (Zirkon, Turmalin, Rutil) ist sehr gering (Tab. 30).

Referenzprobe 2: Das schluffig-sandige Substrat zeigt deutlich magnetische Minerale (wenige Opake als Erzframboide). Es treten kaum Schwerminerale auf (drei Granate, zwei Zirkone, ein Rutil, ein Staurolith, zwei frische Hornblenden). Die Röntgenanalyse zeigt Karbonatdominanz mit Dolomit (ca. 99%) und Quarz < Calzit. Es dominiert die Fraktion < 0,1 mm. Auffällig sind die eckigen Karbonate (Bruchfazies).

Interpretation:

Die Dolomitdominanz kann erstens aufgrund der Korngröße von Dolomit und Calzit dann mit Ferntransport erklärt werden, wenn passende Gesteinsserien in den Liefergebiete liegen (CHESTER und JOHNSON 1971 a,b; CHE-STER et al. 1971; CHESTER et al. 1984; LITTMANN 1991; NIHLEN und SOLYOM 1989). Dem widerspricht das Fehlen von Feldspäten in der Probe.

Die Dolomitvorherrschaft kann zweitens Lokaleinfluss zeigen, erklärbar aus der lokalpetrographischen Situation der unmittelbaren Umgebung. Die "Sonderfazies im oberen Wettersteinkalk" (SCHNEIDER 1954, S. 12) zeichnet sich nämlich im Übergangsbereich zu den Raibler Schichten durch Lagen aus bituminösen Kalk-Dolomitgesteinen aus. Sie sind akzessorisch mit sulfidischen Erzen (Pb, Zn, Fe) angereichert. Unter den Fe-haltigen sind Markasit, Pyrit, Limonit und Siderit zu nennen. Die identifizierten Erzframboide im Sediment deuten auf Pyrit hin (SCHNEIDER 1954, S. 24).

Referenzprobe 3 : Das glimmerhaltige Sediment (2,5 Y 6/3) ist typisch für die Leehänge der Westlichen Karwendelgrube . Das hier genannte Windsediment baut den Aih-Horizont (0-2 cm; pH: 6.9) einer initialen Polsterrendzina (initial Rendzic Leptosol) auf, die über Hangschutt aus Muschelkalk liegt (Tab. 31).

Interpretation:

Das Spektrum ist hinsichtlich der Hauptbestandteile mit Referenz 1 vergleichbar, wenn auch Disthen, Apatit und Turmalin zugunsten von Zirkon fehlen. Auch hier belegt die sehr frische Hornblende rezenten Eintrag. Ebenso unterstreicht der hohe Anteil an Granat, der hinsichtlich mechanischer Beanspruchung sehr stabil ist (BOENIGK 1983), den jungen Verwitterungszustand.

Die Referenzprobe 3 dokumentiert Liefergebiete in den Zentralalpen mit metamorphen (Chlorit, Disthen, Epidot, Granat, Rutil, Staurolith, Turmalin, Zoisit) und magmatischen (Apatit, Glimmer, Hornblende, Quarz, Zirkon) Gesteinsserien. Sie ist den Spektren von BECKE (1901) aus dem Ostalpenraum vergleichbar. Jedoch wären solche Mineralspektren "auch mit der Abstammung des Staubes aus Nordafrika vereinbar, wenn gleichzeitig die meteorologischen Erschelnungen für diese Herkunft..." gegeben sind (BECKE 1901, S. 321).

Diese Aussage trifft für Referenzprobe 1 zu. Sie wurde am Übergang einer Troglage über Mitteleuropa zu einer Hochdrucklage über Mitteleuropa, verbunden mit hoher Südwindtätigkeit, genommen (30.05.03). Ferntransport ist auch wegen der Ähnlichkeit mit den Mineralspektren von Saharastäuben aus den Schweizer Alpen wahrscheinlich (GLAWION 1938; 1939; GÖTZ 1954).

B) Silikatische Leichtminerale (Methode: RDA)

Die Röntgenanalyse (Referenzproben 1 und 2) identifiziert in Einklang mit den lichtoptischen Befunden die MiTab. 32: Relative Mineralhäufigkeit in den Referenzproben 2 und 3 (Methode: RDA).

Probe		Verteilung der silikatische	n Leichtminerale	
	Hauptkomponente eferenz 2 Dol eferenz 3 Qz emiquantitative Bestimmung aus dem Verhä Kalifeldspäte; Alb = Albit; Cc = Calzit; Dol =	Nebenkomponente	wenig	Spuren / Bemerkungen
Referenz 2	Dol		Qz <ca< td=""><td>kein KF, Alb</td></ca<>	kein KF, Alb
Referenz 3	Qz	Cc>Dol>Alb	KF	
= Kalifeldspäte;	Alb = Albit; Cc = Calzit; Dol	= Dolomit	raktion <0.002mm	n (Rel_%)
FIDDE	MLillit/sm 1) Illit	2) Kaolinit 3)	Chlorit	Σ K+Ch
Referenz 2	6 51	າບ 20	23	43
Referenz 3	1645 57	а́и О	27	27
 MLillit/sm = ui fähiger Sch Illite (10 Å-f Kaolinit (7 Å 	nregelmäßige Wechsellager ichten an, i.e. des Smektits Mineral, teilweise randlich au A-Mineral): Chlorit (7 Å-Mine	ungsminerale aus Illit und Smekt in Rel%. ıfweitbar). Der Index zeigt die rar ral)	it. Die Indexzahle ndliche Aufweitun	en geben die Gehalte quell- ig der Schichten an.

Tab. 33: Prozentuale Verteilung der Hauptbestandteile in Staubproben (Methode: RFA).

Probenmaterial	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃ total	CaO	MgO
Referenzprobe 1: Brauner Staub (diese Arbeit)	49,90	8,12	6,10	11,13	2,60
Referenzprobe 2: Sediment auf Altschneeresten (diese Arbeit)	5,31	2,59	1,91	29,34	35,91
Referenzprobe 3: Sediment aus Aih-Horizonten (2260m, diese Arbeit)	64,0	8,75	5,10	2,44	1,79
Saharastaub aus Regen (Fiume 11.03.1901, Schweizer Alpen; BECKE 1901)	49,49	12,10	9,96	11,46	0,41
Saharastaub trocken deponiert (Staubfall Arosa 20./21.05.1937; GLAWION 1939)	75,10	0	6,80	0,11	1,60
Saharastaub aus Regen (n = 7; Staubfälle Europa; COUDÉ-GAUSSE 1982)	58,0	11,0	6,10	8,60	2,70

nerale Calzit, Dolomit, Quarz, Glimmer und Feldspat (Tab. 32).

Interpretation:

Auffällig ist die Quarzhäufigkeit in Referenzprobe 3. Obwohl Quarz als lokales Verwitterungsprodukt der Hornsteinknollen im oberen Muschelkalk interpretierbar ist (JERZ und ULRICH 1966), erhärten die gerundeten Quarze mit Eisenbeläge (Quarzgruppe I) die Wüstenprovenienz. Die detektierte Illit-Dominanz (51% und 57 Rel.-%) und die Schwerminerale sind eindeutige Lösszeiger (DAHMS 1991-1993; MIZOTA et al. 1988; PEINEMANN und GARLEFF 1981; Pye 1984).

Der hohe Chloritgehalt (23% und 27 Rel.-%) spiegelt den auffälligen Hornblende- und Epidot-+Zoisitgehalte wider. Lieferquellen sind Metamorphite der Grünschieferfazies. Theoretisch könnte es sich aber auch um sekundären Bodenchlorit handeln. Jedoch ist das Bodenmilieu des Aih-Horizonts (pH: 6,9) zu alkalisch, um freigesetzte Alst-Ionen als Polyhydroxy-AI-(Fe) in den Zwischenschichträumen von z.B. Illiten zu fixieren. Außerdem wird die primär allochthone Herkunft durch das Fehlen von Chlorit in den Lösungsresiduen von Wettersteinkalk und Muschelkalk unterstrichen (Hüttl 1999; KUHLEMANN et al. 1999; KUBIENA 1944,1953; REYNOLDS 1971).

C) Haupt- und Spurenelemente (Methode: RFA)

Die SIO₂-Gehalte der hier untersuchten Referenzproben 1 und 3 liegen zwischen 49% und 64%. Gut harmoniert Referenzprobe 1 wieder mit dem Saharastaub aus BECKE (1901). Ebenso ist die Hauptelementverteilung der Referentprobe 3 (78% SiO₂ +Al₂O₃ + Fe₂O₃; 4,2% CaO+MgO) mit der mittleren Zusammensetzung von Saharastäuben aus Regen vergleichbar (Coubé-GAUSSE 1982) (Tab. 33).

Interpretation:

Die größeren Schwankungsbereiche der Hauptbestandteile SiO₂ und Al₂O₃ werden auf die unterschiedliche Herkunft der Staubproben zurückgeführt. Das gilt nicht für Fe₂O₃, das im üblichen Schwankungsbereich liegt (3% bis 10%) und somit schwer Aussagen über Herkunftsunterschiede geben kann (PÉCSI und RICHTER 1996; RENDELL 1989; VÖLKEL 1991b; VÖLKEL 1994, 1995; VÖLKEL und RAAB 1999).

4.2.3 Chemische Analyse der Feinfraktion

A) Stäube aus Schneeproben

Die mittlere chemische Zusammensetzung basiert auf Einzeldaten aus 75 Proben (Einzelwerte Kap. 10.6). Die

Tab. 34: Mittlere chemische Zusammensetzung der Feir	fraktion (< 2 mm) von Staub auf Schneeoberflächen.
--	--

Probengruppen	Herbstproben (Oktober)			Winterproben (Dezember bis Februar)			Frühjahrsproben (Mai bis Anfang Juli)		
Untersuchungsgebiet	ZP	WKG	RA	ZP	WKG	RA	ZP	WKG	RA
Silikat [%]	59,5	20,3	87,2	89,1	94,7	95,7	59,7	55,9	58,8
Humus [%]	31,2	32,0	12,5	0	0	0	34,6	43,5	37,5
Karbonat [%]	9,3	47,7	0,3	10,9	5,3	4,3	5,7	0,6	3,3
Gesamtstaub [%]	100	100	100	100	100	100	100	100	99,6
Berechnungsgrundlage:	Summen	der Staubm	engen [mg] pro Gebi	et im jeweil	igen Mess	zeitraum		

Tab. 35: Mittlere chemische Zusammensetzung der Feinfraktion (< 2 mm) von Staub aus Regenniederschlag.

Gebiet	Zugspitzplatt		Karwendelgrube		Reiteralpe	
Meßsommer	2002	2003	2002	2003	2002	2003
Silikat [%]	56,1	59,1	49,1	67,0	58,2	67,1
Humus [%]	40,9	40,0	49,0	32,0	41,1	31,1
Karbonat [%]	3,0	0,9	1,9	1,0	0,8	1,8
Gesamtstaub [%]	100	100	100	100	100	100

Tab. 36: Mittlere Korngrößenverteilung [Vol.-%] der Feinfraktion (< 2 mm) von Staub auf Schneeoberflächen.

Probengruppen	1	Herbst/Winter (Oktober bis Februar)			Frühjahr (Mai bis Anfang Juli)			
Untersuchungsgebiet Korngrößenintervalle:		ZP	WKG	RA	ZP	WKG	RA	
Ton	< 2µm	3,8	17,4	8,5	10,6	11,5	8,8	
Feinschluff	2-6.3µm	17,2	22	21,6	16,3	15,3	19,0	
Mittelschluff	6.3-20µm	30,1	29,2	30,6	26,8	23,1	26,0	
Grobschluff	20-63µm	41,2	24,8	30,4	21,0	24,7	23,7	
Feinsand	63-200µm	7,0	6,0	7,4	11,7	16,1	17,0	
Mittelsand	200-630µm	0,9	0,6	1,5	13,6	7,9	5,6	
Grobsand	630-2000µm	0	0	0	0	1,3	0	
Summe:		100	100	100	100	99,9	100,1	

Stäube der Winterproben (Dezember bis Februar) sind ausschließlich mineralischer Natur und bestehen über alle Gebiete gemittelt zu 93% aus Silikat und nur zu 7% aus Karbonat. Hingegen kennzeichnet Humus mit ungefähr ein Drittel der Feinfraktion die Herbst- und Frühjahrsproben (Tab. 34).

B) Stäube aus Regenproben

Die Stäube aus Regen zeigen über alle Gebiete gemittelt 39% Humus, 59% Silikatstaub und 2% Gesamtkalk (Silikat: Min.: 1%; Max.: 99%; Humus: Min.: 0%; Max.: 100%). Im Messsommer 2003 treten im Vergleich zu 2002 höhere Silikatanteile (mittlere Zunahme: 10%) auf (Tab. 35).

4.2.4 Korngrößenverteilung

A) Stäube aus Schneeproben

Die Textur kennzeichnet die Staubproben anhand der Korngrößenverteilung der mineralischen Feinsubstanz (< 2 mm). Die Tongehalte schwanken je nach Probenart und bezeichnen Sandschluffe sowie Lehmschluffe. Die Textur "reiner Schluff" markiert Stäube aus Neuschneeproben. Schwach sowie mittel toniger Schluff dominiert in den Herbst- und Winterproben, sandig-lehmiger Schluff hingegen in den Frühjahrsproben. Die Mittelwerte für die Probenarten sind als Kornsummenkurven dargestellt (Einzelwerte Kap. 10.4) (Abb. 5).

Die jahreszeitlichen Einflüsse auf die Kornzusammensetzung zeigen sich in einer markanten Zunahme der Sandfraktion in den Frühjahrsproben um den doppelten bis vierfachen Wert. Besonders der Mittelsand ist auffällig. Gleichzeitig sinken die Schluffgehalte, markant der Grobschluff um ca. 50% in den Proben des Zugspitzplatts (Tab. 36).

B) Stäube aus Regenproben

Die mittlere Korngrößenverteilung pro Messtermin zeigt Schluffdominanz mit Werten zwischen 55% und 81% (MW = 69,8; n = 13). Die Summe aus Mittel- und Grobschluff (6,3 μ m - 63 μ m) beträgt durchschnittlich 50% (ZP: 49%; WKG: 47%; RA: 55%). Sand tritt bedeutend in den Proben der Karwendelgrube auf (Mittelsand: 7%

Abb. 5: Kornsummenkurven von Stäuben aus Schneeproben. (Mittelwerte aus allen Gebieten; Basis: 4 Einzelproben pro Gebiet und Probentyp; Einteilung der Abszisse als Rubriken, nicht logarithmisch).

Abb. 6: Kornsummenkurven von Stäuben aus Regen (Mittelwert: 10 Einzelwerte pro Meßstelle und Leerungstermin; Einteilung der Abszisse als Rubriken, nicht logarithmisch).

bis 9%). Die Einzelproben zeigen schwach bis mittel tonige Schluffe bis hin zu sandig-lehmigen Vertretern. Als Haupttexturtypen treten je nach Ton- und Sandgehalt Ton- bzw, Sandschluffe sowie reine Schluffe auf. Die Zusammenfassung zu mittleren Kornsummenkurven zeigt ein sehr einheitliches Bild (Einzelwerte Kap. 10.4). Die Stäube aus Regen in dieser Darstellungsart sind Lehmschluffe (Abb. 6).

4.3 Ergebnisse der Analysen von rezent-äolisch beeinflussten Böden

Die Analysedaten der organogenen Böden des Zugspitzplatts finden sich in Hüttl (1999), die Einzeldaten aus dem Karwendelgebirge in SCHLOTT (1997) sowie im Anhang (Kap. 10.2, 10.3 und 10.5).

4.3.1 Autochthone Böden - Zugspitzplatt

Die Rendzinen und O/C-Böden sind in bezug auf ihre Flächendeckung die Hauptbodentypen (Hüttl 1999). Die Mächtigkeit und Ausprägung ihrer organischen Oberböden (A-, O-Horizonte) variiert in Abhängigkeit vom Bedeckungsgrad und den Entwicklungsstadien des Polsterseggenrasens *Caricetum firmae* (FRIES 1985; Zöttl 1950,1966). Auffällig sind lehmig-tonige Mischhorizonte (Oh+T) von schwarzbrauner Farbe (10 YR 3/2, 7.5 YR 4/4), die oft unter den schwarzen Oh-Horizonten (10 YR 1.7/1, 10 YR 2/1, 10 YR 2/2) ausgebildet sind. Über dem Ausgangsgestein sind initiale T-Horizonte (2 cm bis 5 cm) mit deutlicher Braunfärbung (10 YR 4/4, 7.5 YR 4/4) häufig. Sie repräsentieren die autochthone Mineralbodenbildung aus Wettersteinkalk.

In Anlehnung an die Sukzessionsstufen (initial, typisch, reif) von *Caricetum firmae* werden die Polsterrendzinen bzw. O/C-Böden auf dem Zugspitzplatt in drei Entwicklungsstadien eingestuft:

- initial (Ah bzw. Oh: bis 5 cm)
- typisch (Ah bzw. Oh > 5 cm)
- reif (Oh > 5 cm + T-Horizont)

In Kombination mit den bodenkundlichen Merkmalen (Humusform, organische Substanz, Horizontmächtigkeit, pH-Wert) ergibt sich folgende Einteilung (Tab. 37).

A) Laboranalytische Charakterisierung - Zugspitzplatt

A1. Organische Substanz

Die O-Horizonte der Mull- und Moderauflagen von schwarz bis rotschwarzer Farbe (2.5 Y 2.5/1, 5 Y 2.5/1, 10 YR 2/1, 10 YR 2/2) sind sehr bis extrem humos. Im Sinne der Entwicklungsreihe nimmt die Mächtigkeit der Humusauflagen vom Initialstadium der Syrosem-Rendzina (Aih, AhCv) bis hin zum Klimax der reifen Oh-Horizonte zu. Die mineralischen T-Horizonte unterscheiden sich deutlich, obwohl dort auch Humuseintrag (15% bis 20%) stattgefunden hat (Tab. 38).

A2. Verlehmungsprodukt

Alle organischen Horizonte zeigen Glimmer und Verlehmungsanteile, besonders deutlich die Oh-Horizonte der typischen und reifen Polsterrendzina mit hohem Potenzial zur Ton-Humus-Kopplung. Zur laboranalytischen Kennzeichnung führt BOCHTER (1983, S.20) das Verlehmungsprodukt VL [%] zum "Ausdruck der Verlehmung eines Horizontes" ein. VL wird als prozentualer Anteil bezogen auf die Bodenprobe dargestellt. Laboranalytisch setzt sich die Feinerdefraktion der organogenen Gebirgsböden aus vier Hauptbestandteilen zusammen (BOCHTER 1983):

- 1. Streureste < 2 mm
- 2. Humus (org. Substanz < 2 mm)
- 3. Gesteinsabrieb (Bodenkarbonat der Feinerde < 2 mm)

 Mineralische Bodensubstanz (Verlehmungsprodukte < 2 mm)

VL = 100% (Boden < 2 mm) – Summe (org. Substanz [%] + CaCO₃ < 2 mm [%])

Die Einzelwerte von VL [%] schwanken stark (0,4% bis > 80%) mit dem Trend einer steigenden Verlehmung vom Initialstadium hin zu den T-Horizonten der reifen Polsterrendzina im Sinne der Bodenentwicklungsreihe (Abb. 7).

Die schwache Verlehmung der meisten Aih-Horizonte geht mit hohen Karbonatgehalten (> 80%) einher. Sie stammen vom "Gesteinsabrieb" (BOCHTER 1983, S. 20), der dem geringen Entwicklungsstatus entspricht. Schluff- und Feinsandanteile des Gesteinsabriebs können lokal-äolisch, die größeren Partikel auch mit Hang-

Abb. 7: Verlehmungsprodukte [%] der Bodenhorizonte, Zugspitzplatt.

Tab. 37: Autochthon-organogene Bodentypen der alpinen Stufe, Zugspitzplatt.

Entwicklungsstadium der Vegetation 1)	Bodentyp nach AG Boden (1996) nach WRB (1998) ²⁾	Horizontierung und Charakteristik	pH-Wert
Initiales Caricetum firmae Th+Lm, Sr im Übergang zu	a) Lockersyrosem-Rendzina, Protorendzina b) Polsterrendzina	a) Aih/C; Aih < 3cm b) Ah/C; Ah < 10cm	рН 7,5 – 8,2 рН 7,2 – 7,9
Cf	initial Rendzic Leptosol 2)	Ah-R ²⁾	
Typisches Caricetum firmae	a) Rendzina / Polsterrendzina b) O/C Boden	a) Ah/C; Ah 10 bis 40cm b) O/C; Oh>10cm;	pH 6,8 – 7,2 pH 5,5 – 6,8
in Schattlagen: Ac + Cf	c) Moderrendzina / Pechrendzina typic Folic Histosol: Rendzic Leptosol ²⁾	c) Of/Oh/C; Of/Oh > 10 cm O-R: Ah-R ²)	pH 5,4 – 6,5
Reifes Caricetum firmae	a) Mullrendzina	Ah/C; Ah >40cm	pH 6,1 - 6,5
Übergang zwischen Cf ty- pisch und Seslerio Caricetum semp.	b) Sondervarietät: Reife Polsterrendzina	(O)/Oh+T/(T)/TC ³⁾ Oh > 20 cm, Oh+T > 5 cm T < 5cm	рН 5,7 – 6,0 рН 5,6 – 5,9
	developed Folic Histosol with initial cambic features (OB) or / and small Bt-horizon ²	OB-C ² ; (O)-OB-(Bt)-BC ²) O > 20 cm or OB > 5 cm Bt < 5cm,	

- Cf = Caricetum firmae (Polsterseggenrasen) auf Fels, Schutt, Moräne

- SCs = Seslerio Caricetum sempervirentis (Blaugras-Horstseggenrasen) auf Moräne, äolischen Substraten

- Sr = Salicetum retuso-reticulatae (Spalierweiderasen) auf Schutt und Fels

- Th + Lm = Thlaspietum rotundifolii (Täuschelkrauthalde) und Leontodontetum montani (Berglöwenzahnhalde) bevorzugt auf Moräne, Schutt

2) Horizontierung und mögliche Benennung gemäß World Reference Base (1998)

 Horizontsymbole in Klammer: Horizont nicht immer vorhanden, z.B. (Bt); O = organische Substanz > 30%; Ah = organische Substanz < 30%

Tab. 38: Organische Substanz und Horizontmächtigkeit in autochthonen Böden.

Entwicklungsstadium	Hori- zont	Profile	0) (Ce	rg. Substa _{org} x 1.72)	nz [%]	Horizontmächtigkeit [cm]		
			Min.	Min. Max.		Min. Max.	Mittel	
Initial: Protorendzina	Aih	P26, P30, P31, P32	2,5	16,0	9,7	4	10	7
Initial: mullartige Rendzina	Ah	P27, P28, P4, P3	8,2	29,1	17,7	5	13	10
Typisch:	Of	P33, P44, P45	61,3	74,1	67,3	2	8	5
O/G-Boden, Moderrendzina, Tangelrendzina	Oh	P12, P44, P10, P36, P41, P33	38,8	60,3	51,0	15	25	20
	Oh	P7, P 6, P11, P38, P45, P47	33,4	74,5	61,4	12	28	22
Reif: Polsterrendzina, O/C-Boden	Oh+T	P34, P11, P29, P45, P47	34,1	59,8	51,1	15	26	20
	T	P34, P11, P29, P47	15,1	20,1	17,3	2	5	3
Mittelwert: n umfasst 4 bis 5 pro	Probenart						1	

wasser (P29, 45, 47) in die Böden gelangen. In Karsthohlformen verbäckt Gesteinsabrieb auch zu Pseudomycelien, wodurch sich die Säurepufferkapazität der Of/Oh-Horizonte (z.B. ZP_P33) verbessert. Dieser Effekt wird auch "natural liming" genannt (LITAOR 1987, S.142). Die stärkste Anreicherung (VL > 80%) zeigen die schwach bis mittel karbonathaltigen (2,1% bis 6,5%) T-Horizonte der reifen Polsterrendzina.

Das Verlehmungsprodukt ist aber nicht mit der Korngröße Ton identisch. So werden einige Profile trotz hoher VL-Anteile (ZP_P6: 53%; ZP_P7: 69%) nicht als Oh+T-Horizonte geführt, da sie deutlich höhere Sandund Schluffgehalte zeigen (vgl. auch Tab. 39). Diese äolischen Indikatoren machen die Herkunft der Lehmanteile in den glimmerreichen Of- und oberen Oh-Lagen aus der insitu Verwitterung des deponierten Mineralstaubes wahrscheinlich (Kap. 4.2).

A3. Korngrößenverteilung

Die genetische Beurteilung der Verlehmungsanteile kann mit Hilfe der Textur aus der Korngrößenanalyse gestützt werden (Tab. 39).

Hohe Tongehalte (Mittel: 42%) treten in den stark verlehmten Oh+T-Horizonten und in den T-Horizonten über dem Ausgangsgestein (Mittel: 51%) auf. Ihre ermittelten Verlehmungsprodukte (VL) repräsentieren zu mehr als 50% auch die Korngröße Ton. Hingegen sind alle glimmerreichen Oberböden durch hohe Schluffgehalte (meist > 60%) gekennzeichnet. Das Maximum (86%) mit der Textur "reiner Schluff" zeigt die Of-Lage von ZP_P33.

B) Pedologische Indikatoren f ür rezenten Staubeintrag - Zugspitzplatt

B1. Kornparameter

Aus den Korngrößendaten errechnen sich Quotienten aus Mittel- und Grobschluff (mU/gU) sowie aus Feinund Grobschluff (fU / gU), die als übliche Kornparameter genetische Substratinterpretationen zulassen. Besonders der Schluff/Ton-Quotient (U/T-Quotient) dient zur Abschätzung des äolischen Einflusses. Alle Quotienten bestimmen sich für jede Einzelprobe und sind als Mittelwert für die jeweiligen Horizontgruppen dargestellt (Tab. 40).

Die Zuordnung der Werte aus den U/T-Quotienten ergibt folgende Gruppen:

- Gruppe 1: Ah- und reife Oh-Horizonte (U/T = 2)(U/T ca. 1)
- ÷ Gruppe 2: Oh+T- und T-Horizonte
 - Gruppe 3: Aih-, typische Oh-Horizonte, Of (U/T > 3)

Interpretation:

Der U/T-Quotient drückt in Gruppe 2 die Verwandtschaft zwischen Oh+T- und T-Horizont, d.h. autochthone Herkunft aus. Eine starke äolische Komponente tragen die Böden aus Gruppe 3, auch wenn der herausragende Wert von 51,3 auf den geringen Tongehalt von 1.6% zurückgeht.

Die Hauptgruppe "Ton" charakterisiert die reife Polsterrendzina (Oh+T- und T-Horizonte) sowie die mullartige Rendzina (Ah-Horizonte) auf Standorten mit Lockersubstrat. Hier ist die beschleunigte Kalklösung Ursache der residualen Tonakkumulation (Drew 1983; GRAČANIN

Entwicklungsstadi- um	Hori- zont	Profile	Sand	(2000-6 [Vol %]	3µm) 	Sch	luff (63- [Vol %	2µm) 6]	Ţ	on (<2µ [Vol %	m)]
	1		Min.	Max.	Mittel	Min.	Max.	Mittel	Min.	Max.	Mittel
Initial: Protorendzina	Aih, AhCv	P26,P30, P31, P32	11,9	35,8	25,6	45,4	72,1	55,2	6,1	29,1	19,3
Initial: mullartige Rendzina	Ah	P27, P28, P4, P3	1,0	9,2	6,3	61,1	70,4	65,2	25,8	30,8	28,5
Typisch: O/C-Böden.	Of	P33, P44, P12	11,8	35,7	23,8	63,5	86,1	74,8	1,0	2,2	1,6
Moderrendzina, Tangelrendzina	Oh	P12, P44, P10, P36, P41, P33	1,2	32,9	10,3	44,3	75,9	66,8	18,6	25,5	23,0
Poif	Oh	P7, P6, P11, P38, P45, P47	0	15,2	4,4	55,5	69,1	62,9	22,8	41,3	33,0
Polsterrendzina, O/C-Boden	Oh+T	P34, P11, P45, P43, P47	0	5,2	2,3	50,2	58,0	54,9	39,5	45,4	42,4
	T P11,P47, P39, P34	0	1,2	0,3	45,7	58,3	50,2	41,8	57,3	51,0	
Mittelwert: n umfasst	5 Einzelw	erte pro Prob	enart								

Tab. 39: Mittlere Korngrößenverteilung des Feinbodens, Zugspitzplatt.

Tab. 40: Bodenart der Feinerde und Kornparameter der	r autochthonen Böden, Zugspitzplatt.
--	--------------------------------------

Bodenhorizont	Bodenart 1)	Bodenarten- gruppe 1)	Haupt- gruppe 1)	Mittlerer U/T-Quotient für die Horizontgruppe 2)	mU / gU 2)	fU / gU 2)
Aih, initial	mittel toniger U sandiger U sandig-toniger L	Lehmschluff Sandschluff Tonlehm	U U L	4,1	0,8	0,3
Ah	mittel schluffiger T stark schluffiger T	Schluffton Schluffton	т	2,0	0,7	0,2
Of, typisch	sandiger U reiner U	Sandschluff Sandschluff	U	51,3	1,2	0,5
Oh, typisch	stark toniger U schwach sandiger L	Tonschluff typ, Lehm	UL	3,0	3,3	0,4
Oh, reif	stark schluffiger T mittel schluffiger T schluffiger L	Schluffton Schluffton Tonschluff	T T U	2,0	5	1,3
Oh+T, reif	mittel schluffiger T	Schluffton	T	1,3	10	2,4
Т	schwach schluffiger T mittel schluffiger T	Lehmton Schluffton	T	1,0	10	3,6

Tab. 41: Mittlere Zusammensetzung der Schluff-Fraktion [Vol.-%] in Oberböden und Staub.

Gebiet	Horizont	fU [%]	mU [%]	gU [%]	U [%]
	121-01	2-6.3µm	6.3-20µm	20-63µm	2-63µm
Initial: Protorendzina, mullartige Rendzina	Aih	8,3	20,6	26,3	55,2
Typisch: Moderrendzina	Of	6,3	29,7	39,2	75,2
Typisch: O/C-Boden	Oh	6,1	44,7	16,0	66,8
Staub aus Neuschnee	(0-1cm)	12,6	27,6	44,9	85,1
Staub von Schneeoberflächen (Winterproben)	(0-1cm)	17,5	25,9	41,1	84,5
Mittelwert: n umfasst 5 Einzelwerte pro Probengru	ppe				

1972; Helldén 1974; Hüttl 1999; Scheffer et al. 1960; Zöttl 1966).

Hingegen ist die Hauptgruppe "Lehm" auf die Verwitterung der allochthonen Stäube zurückzuführen. Es hat also die Neubildung von sekundären Tonmineralen aus der Silikatverwitterung (Glimmer, Feldspäte, Foide) stattgefunden (GERASIMOV 1973; REHFUESS 1983; SCHEF-FER et al. 1966). Da die Oh-Horizonte oft sekundär aufgekalkt sind (pH-Werte > 5), wird auch die hemmende "Aziditätsgrenze" (SCHEFFER et al. 1966, S. 80) nicht unterschritten, die bei pH-Werten von < 4 eine Bildung von Dreischicht-Tonmineralen aus Glimmern verhindert würde.

B2. Schluff-Fraktion (63 µm bis 2 µm)

Schluff kennzeichnet die deponierten Stäube. In Abhängigkeit von der Probenart und den Liefergebieten liegen die Häufigkeiten im Grob- und Mittelschluff-Intervall (Kap. 4.2.1). Dies ist auch bei den stark äolisch beeinflussten Bodenhorizonten (U/T-Quotienten > 3) der Fall. Hier haben Grob- und Mittelschluff mit ca. 52% bis 69% Anteil am Gesamtschluff. Mit zunehmender Bodenentwicklung verschiebt sich das Maximum in Richtung Mittelschluff (Tab. 41).

Interpretation:

Der Mittelschluff ist ein äolischer Indikator, da der für Primärlösse definierte Grobschluff-Indikator Fremdkomponenten alleine nicht beweist (ARTMANN und VÖLKEL 1999; THALHEIM 1994; THALHEIM und FIEDLER 1990; VÖLKEL 1994). Jedoch repräsentiert der Mittelschluff in Böden nicht nur den äolischen Primärstaub, sondern entsteht auch als Produkt der insitu Verwitterung der allochthonen Minerale (BRONGER 1976; BRONGER und KALK 1979). Die Zerkleinerung wird auch durch "kryoklastischen Zerfall" (SCHEFFER et al. 1966, S. 83) vorbereitet, der sich bis in die Grobton-Fraktion fortsetzen kann. Dieser Prozess ist für die z.T. beachtlichen lehmig-tonigen Verwitterungsprodukte in äolisch geprägten Horizonten verantwortlich (EBERLE 1994; LATRIDOU 1988; SMALLEY und SMALLEY 1983). Das Ausmaß des kryoklastischen Zerfalls und die Zunahme von Mittel- und Feinschluff steigen mit der Bodenentwicklung.

B3. Feinsandfraktion (200 µm bis 63 µm)

In den Bodenhorizonten betragen die Feinsandgehalte zwischen 12% und 36%. Der rezente Saharastaub weist nur Feinstsand (63 μ m-125 μ m) mit Mittelwerten von 6% bzw. 9% auf (Tab. 42).

Tab. 42: Zusammensetzung der Feinsandfraktion in Staub- und Bodenproben.

Staubproben:	63-125µm [Vol%]	125-160µm [Vol%]	160-200µm [Vol%]	Summe Feinsand (63-200µm) [Vol%]
Staub aus Neuschnee	8,9	0	0	8,9
Staub (Winterproben)	6,4	0	0	6,4
Bodenhorizonte:	63-125µm [Vol%]	125-160µm [Vol%]	160-200µm [Vol%]	Summe Feinsand (63-200µm) [Vol%]
Of (0-2cm), P33	26,8	6,4	2,5	35,7
Oh (2-18cm), P33	10,3	1,3	0	11,6
Oh (0-18cm), P41	22,4	6,9	3,5	32,8
Oh (0-22cm), P11	12,2	2,4	0,6	15,2
Mittelwerte aus je 15 Einzelp	roben pro Probenar	t		

Interpretation:

Sandstürme während der Deflation sind die Ursache für Feinsand in Saharastäuben (z.B. GILETTE et al. 1974; Mc-TAINSH und WALKER 1982; NICKLING 1978; SHAO et al. 1993). LITTMANN (1991, S. 60) bezeichnet diese Stäube als "coarse series". Damit ist der Feinsandgehalt im vorliegenden Staubmaterial nicht im Widerspruch zur Provenienz Sahara. Sowohl die Bodenhorizonte als auch der Staub zeigen das Maximum im Feinstsand (63 µm bis 125 µm). Dies ist z.B. mit der zweiten Kornhäufigkeit des identifizierten Glimmers im Staub deckungsgleich, der durch alpine Rasenvegetation unmittelbar im Oberboden fixiert wird bzw. durch Schmelzwässer in die Böden gelangt (z.B. BIRKELAND et al. 1987; CALLIEUX 1978; DIJKMANS 1989; EMBLETON und KiNG 1975).

4.3.2 Autochthone Böden -Westliche Karwendelgrube

Das Bodenmosaik in der alpinen Stufe ist von organogenen Rendzinen geprägt. Dazu treten braune Mineralbodenhorizonte auf Muschelkalk. Im Bereich der aktiven Schutthalden und am Übergang zur subnivalen Stufe dominieren Protorendzinen und Lockersyroseme.

Eine Besonderheit stellt die <u>äolische Mullrendzina</u> dar (Ah/C-Profile: KG_P11, KG_P12), die in großer Ausdehnung die Lee-Hänge der Großdoline in N- und NE-Exposition besetzt. Die Mächtigkeit ihrer Ah-Horizonte (28 cm bis 80 cm) schwankt je nach Mikrorelief und solifluidaler Überformung.

Die Mullrendzinen sind auffällig an Arabidion caeruleae (z.B. Carex parviflora, Saxifraga androsacea) gebunden. Dazu treten die Sauberboden-Alpenmatten mit *Euphrasia minima* als azidophile Zeiger für das glimmerreiche Substrat an diesen lange schneebedeckten Standorten (ELLENBERG 1996, S. 584; S. 614). Da die äolische Mullrendzina keinerlei Anzeichen von Verbraunung zeigt, steht sie der organisch geprägten Bodengruppe (Ah/C-Profil) näher als den allochthonen Braunerden der Gruppe II.

A) Laboranalytische Charakterisierung -Westliche Karwendelgrube

A1. Organische Substanz

Sehr hohe Gehalte an organischer Substanz (16% bis 41%) kennzeichnen die gut entwickelten Oberböden mit den Humusformen Mull, mullartiger Moder und Moder. Die Bodenfarbe ist schwarz (10 YR 1.7/1; 10 YR 2/1; 10 YR 2/2; 2.5 Y 2.5/1; 5 Y 2.5/2). Darunter liegen oft schwarzbraune bis dunkelgraue (10 YR 4/2; 7.5 YR 3/1; 5 Y 3/2) Oh+T-Horizonte, die am Übergang zum Muschelkalk humusvermischt und deutlich verlehmt sind (pH-Werte: 4,9 - 5,9). Die Zunahme der Farbintensität (5 Y 4/3; 7.5 YR 3/4) sowie die Reduzierung der mittleren Humusgehalte auf 16% im T-Horizont ermöglichen die Unterscheidung zum Oh+T-Horizont. Im Gegensatz dazu sind die Ah-Horizonte der äolischen Mullrendzinen deutlich humusärmer (org. Substanz; 8% bis 10%). Die pH-Werte liegen zwischen 5,0 und 5,9 (Tab. 43).

A2. Verlehmungsprodukt

Das Verlehmungsprodukt drückt die lehmige oder schluffig-tonige Textur der Profile KG_P1 bis P10 aus. Im Sinne der autochthonen Entwicklungsreihe tritt der höchste Wert (VL: 79%) im residualen T-Horizont (3 cm mächtig) aus Muschelkalk (KG_P10) auf. Die selten deutlich ausgeprägten T-Horizonte sind je nach Substrattyp schwach bis mittel karbonathaltig (2,5% bis 7%). Die größten Werte von 90% VL weisen die fast karbonatfreien, äolischen Mullrendzinen auf (Tab. 43).

A3. Korngrößenverteilung

Hohe Schluffgehalte (> 60%) mit maximal 76% im Oh-Horizont der Polsterrendzina (KG_P7) sind typisch. Die mittleren Sandgehalte reduzieren sich von 22% in den Aih-Horizonten auf 2% in den T-Horizonten. Im Gegensatz dazu bestehen die Ah-Horizonte der äolischen Mullrendzinen zu mehr als 60% aus Sand (Tab. 44).

Interpretation:

Der Anstieg des Tongehalts zur reifen Polsterrendzina (KG_P 10/2) kennzeichnet die autochthone Entwicklung auf Muschelkalk. Sie manifestiert sich in der beginnenden Verbraunung (Oh+T; 41% Ton). Allerdings sind die Tongehalte der T-Horizonte (39% bis 44%) nochmals Tab. 43: Organische Substanz, Horizontmächtigkeit und Verlehmungsprodukt, Westliche Karwendelgrube.

Entwicklungsstadium	Hori- zont	Profile	Org. Substanz (Corg x 1.72) [%]	Horizontmächtig- keit [cm]	Verlehmungsprodukt VL [%]
Initial:		P13	3,4	4	52,7
Protorendzina, Mullartige Rendzi-	Aih	P14	15,9	5	35,4
na		P15	6,9	7	42,1
Tursioch	Ah	P4	25,8	13	73,7
Ab/C Brofile	1	P5	26,9	16	58,2
An/C-Frome		P6	18,9	22	62,1
Typisch:	Of	P7/1	38,9	5	45,1
Skelett- und Felshumusboden	Oh	P7/2	33,5	28	65,1
Moderrendzina		P8	32,8	19	69,1
	Ob	P9	41,5	27	58,3
Poif	On	P10/1	40,1	25	62,3
reife Polsterrendzina O/C-Boden	Oh+T	P10/2	36,3	18	63,2
relie Poistenendzina, 0/0-boden	T	P10/3	18,6	2	78,9
	T	P9/2	16,1	3	79,1
Aplicate Multrandzing Ab/IIC	Ah	P11	8,8	28	90,2
Autorise in a maniferrazina An/116		P12	10,1	30	89,9

Tab. 44: Korngrößenverteilung des humusfreien Feinbodens, Westliche Karwendelgrube.

Entwicklungsstadium	Hori- zont	Profile	Sand (2000-63µm) [Vol%]	Schluff (63-2µm) [Vol%]	Ton <2µm [Vol%]
Initial:	1.0	P13	20,9	63,3	15,8
Protorendzina, Mullartige	Aih	P14	18,5	69,4	12,1
Rendzina		P15	25,6	64,6	9,8
Typisch:	Ah	P4	13,7	64,9	21,4
Ah/C-Profile		P5	22,3	57,8	19,9
		P6	12,5	59,8	27,7
Typisch:	Of	P7/1	1,5	76,1	22,5
Skelett- und Felshumusboden	Oh	P7/2	22,2	71,3	6,5
Moderrendzina		P8	4,5	75,1	20,4
Reif:	Oh	P9	3,2	63,7	33,1
reife Polsterrendzina, O/C-	On	P10/1	1,9	61,3	36,8
Boden	Oh+T	P10/2	2,3	56,7	41
	T	P10/3	2,3	58,3	39,4
	T	P9/2	3	53,4	43,6
Äolische Mullrendzina Ah/IIC	Ah	P11	71,8	25,2	3
	1	P12	58,9	35,3	5,8

niedriger als jene aus Wettersteinkalk. Die äolische Mullrendzina weist trotz hoher Verlehmungsrückstände die geringsten Tongehalte (3% bis 6%) im Korngrößenspektrum auf.

B) Pedologische Indikatoren f ür rezenten Staubeintrag - Westliche Karwendelgrube B1. Kornparameter

Die hohen Werte der U/T-Quotienten (3,5 bis 11) stellen die glimmerreichen Initialhorizonte und äolischen Mullrendzinen heraus. Ebenso wird die genetische Verwandtschaft von Oh+T- und T-Horizonten deutlich (U/T: 1,4) (Tab. 45).

Gruppe 1:	Aih-, Of-Horizonte,	
	Ah-Horizonte der Mullrendzina	(U/T ≥5)
Gruppe 2:	Ah- und typische	
	Oh-Horizonte	(U/T: ≥ 3)
Gruppe 3:	Oh-Horizonte der reifen	
	Polsterrendzina	(U/T: 2)
Gruppe 4:	Oh+T- und T-Horizonte	(U/T: 1,4)

B2. Schluff-Fraktion (63 µm bis 2 µm)

Die prozentuale Verteilung der Schluff-Fraktion für die Horizonte der Einzelprofile mit einem U/T-Quotienten > 2 zeigt eine Dominanz des Mittelschluffs. Hingegen kennzeichnet der Grobschluff die Of-Lagen und äoli-

Bodenhorizont	Bodenart 1)	Bodenarten- gruppe	Haupt- gruppe 1)	Mittlerer U/T-Quotient für die Horizontgruppe 2)	mU / gU ²⁾	fU / gU 2)
Ah, äolische Mullrendzina	mittel schluffiger S	Schluffsand	S	7,2	0,5	0,4
Of, typisch	sandiger U	Sandschluff	U	11,0	0,5	0,2
Aih, initial	schwach toniger U mittel toniger U sandig-lehmiger U	Lehmschluff	U	5,4	1,5	1,1
Ah	mittel toniger U stark toniger U schluffiger L	Lehmschluff Schluffton Schluffton	U T T	2,7	1,3	1,2
Oh, typisch	schluffiger L stark toniger U	Tonschluff Tonschluff	UUU	3,5	2,0	0,8
Oh, reif	mittel schluffiger T	Schluffton	T	1,8	3,4	0,8
Oh+T, reif	mittel schluffiger T	Schluffton	Т	1,4	4,4	1,6
T-Horizont	mittel schluffiger T	Schluffton	Т	1,4	4,4	1,7
 S = Sand, U Berechnung 	= Schluff, L = Lehm, T : Schluffgehalt / Tongeh	= Ton; Definition alt [%], Grundlag	nach AG BC e: Kornanaly	DDEN (1996, S. 135-140) sedaten der Einzelprofile		

Tab. 45: Bodenarten der Feinerde und Kornparameter der autochthonen Böden, Westliche Karwendelgrube.

Tab. 46: Mittlere Zusammensetzung der Schluff-Fraktion [Vol.-%], Westliche Karwendelgrube.

Entwicklungsstadien	Horizontmächtigkeit	fU [%]	mU [%]	gU [%]
		2-6.3µm	6.3-20µm	20-63µm
Initial:	Aih (8cm)	20,0	27,6	18,2
Protorendzina mullartige Rendzina	Ah (12cm)	20,7	22,8	17,3
Typisch:	Of (3cm)	9,8	21,2	45,0
Moderrendzina, O/C Boden	Oh (15cm)	16,8	39,2	19,9
Reif: Polsterrendzina, O/C Boden	Oh (18cm)	9,7	40,7	12,1
Åolische Mullrendzina	Ah (40cm)	6,6	8,0	15,7
Staub aus Neuschnee	(0-1cm)	9,5	24,5	48,5
Staub von Schneeoberflächen (Winterproben)	(0-1cm)	23,8	33	26,5
Mittelwertbildung: Staubproben, n = 10 je Proben	art: Bodenhorizonte, n un	nfasst 3 bis 5, je	nach Probenum	fang

Tab. 47: Mittlere Zusammensetzung der Sandfraktion [Gew.-%], Westliche Karwendelgrube.

Entwicklungsstadien	Hori-	gS [%]	mS [%]	fS [%]	Sand [%]	Feinsand	lintervall [%]	
	zont	2000-	630-	200-	2000-	63-	125-	160
		630µm	200µm	63µm	63µm	125µm	160µm	200µm
Initial: Protorendzina, mullar-	Aih	3,8	3,9	13,8	21,6		nic	ht bestimmt
tige Rendzina	Ah	0,0	1,1	15,0	16,2	14,6	3,1	2,6
Typisch: Moderrendzina,	Of	1,6	3,6	17,0	22,2	8,6	6,4	1,9
O/C Boden	Oh	0,0	0,0	3,0	3,0	1.1.1.1.1.1	nic	ht bestimmt
Reif: Polsterrendzina	Oh	0,0	0,0	2,6	2,6		nic	ht bestimmt
Aolische Mullrendzina	Ah	5,5	13,7	46,2	65,4	37,9	8,7	3,3
Staub aus Neuschnee	(0-1cm)	0	0	12,1	12,1	10,2	2,0	0
Staub von Schneeoberflä- chen (Winterproben)	(0-1cm)	0	1	8,3	8,3	6,3	2,0	1,0
Mittelwertbildung: Staubproben	, n = 10 je F	robenart; E	Bodenhoriza	onte, n umf	asst 3 bis 5,	je nach Pro	obenumfang.	

schen Mullrendzinen. Grob- und Mittelschluff betragen in der Summe zwischen 53% und 87% des Gesamtschluffes.

Der Vergleich mit Hilfe der Kornparameter (in Tab. 45), zeigt wieder Ähnlichkeiten zwischen äolischer Mullrendzina, Of-Horizont und Staubmaterial (Tab. 46).

B3. Sandfraktion (2000 µm bis 63 µm)

Die größten Sandgehalte zeigen die äolischen Mullrendzinen (65%) und Of-Lagen (22%). Feinsand (200 µm bis 63 µm) dominiert in allen Bodentypen, sinkt aber absolut mit der Horizontentwicklung. Feinstsand (63 µm bis 125 µm) kennzeichnet die Stäube sowie die stark äolischen Bodenhorizonten (Tab. 47).

4.3.3 Autochthone Böden - Östliche Karwendelgrube

Die drei Vergleichsprofile ÖK_B5 bis ÖK_B7 beschreiben braune Böden aus Reichenhaller Schichten (Residuum im Mittel 14%). Sie befinden sich in Hanglagen (SE 20° bis 30°) mit konvex-konkaver und konkav-gestreckter Horizontalwölbung. Die Solummächtigkeiten (32 cm bis 90 cm) und der dichte Bewuchs mit Seslerio-Caricetum semp. unterstreichen ihren Reifegrad (CREDNER et al. 1998; FRIES 1985).

A) Laboranalytische Charakterisierung – Östliche Karwendelgrube

Die Verlehmungsprodukte liegen zwischen 70% und 75%. Je nach Schuttlieferung sind die Böden skelett-

haltig (10% bis 50%). Der mineralische Unterboden ist sehr karbonatarm (< 5%; pH-Werte: 4,8 bis 6,8). Die Bodenfarbe reicht von hellgelb über olivbraun (2.5 Y 7/4; 2.5 Y 5/2; 2.5 Y 4/3).

Mit zunehmender Tiefe ist das Solum toniger und geht am Kontakt zu den C-Horizonten in stark bindigen Residualton über, der in Nestern, Bändchen oder Schmitzen konzentriert ist. Auf dem Substrattyp Schutt liegt im klebrig-tonigen Residualmaterial zersplitterter graugelber Feingrus (2,5 Y 7/2). Das Bodengefüge ist polyedrisch bis plattig. Ebenfalls graugelb (2.5 Y 5/4; 2.5 Y 7/2 ; 2.5 Y 8/3) ist der autigene Lösungsrückstand des Anstehenden. Schwarze Schlieren zeigen Humuseinwaschung; entsprechend changiert die Bodenfarbe in diesen Bvh-Horizonten von grau bis graubraun (2.5 Y 3/1; 2.5 Y 3/3; 2.5 Y 4/1; 2.5 Y 4/2) (Tab. 48).

A1. Korngrößenverteilung

Die Schluffgehalte liegen in den Bvh- und AhBv-Horizonten zwischen 64% und 65%. Bezogen auf den Gesamtschluff beträgt die Summe aus Mittel- und Feinschluff 80% bis 90%. Besonders tonreich (27% bis 34%) sind die braunen T-Horizonte über den Ausgangsgesteinen. Ein Vergleich mit deren Lösungsresiduen zeigt Übereinstimmung in bezug auf die Schluff- und Tonfraktion. Dies ist ein Befund für die autigene Herkunft der Schluff- und Tonfraktion in den Sola (Tab. 49).

A2. Kornparameter

Die Übersicht der Bodenarten weist die Bvh- und Ah+Bv-Horizonte als Tonschluffe aus. Die stark schluffi-

Bodenprofile	Org. Substanz [%]	CaCO ₃ [%]	Verlehmungsprodukt VL [%]
ÖK_5/1 Bvh (0-80cm)	15,6	9,1	75,3
ÖK_5/2 (Bv)-TCv (80-90cm)	13,7	7,9	78,4
ÖK_6/1 Bvh (0-5cm)	16,2	14,2	69,6
ÖK_6/2 Bv+T (5-38cm)	7,9	9,2	82,9
ÖK_7/1 AhBv (0-5cm)	6,8	1,1	92,1
ÖK_7/2 T (5-32cm)	4,9	2,3	92,8

Tab. 48: Laboranalytische Kennwerte autochthoner Mineralböden, Östliche Karwendelgrube.

Tab. 49: Korngrößenverteilung [Gew.-%] autochthoner Böden, Östliche Karwendelgrube.

Profil	Horizont 1)		gS	mS	fS	S[%]	gU	mU	fU	U [%]	Ton
			2000- 630µm	630- 200µm	200- 63µm	2000- 63µm	63- 20µm	20- 6,3µm	6.3- 2µm	63- 2µm	< 2µm
P5/1	Bvh	0-80cm	0,2	1,5	5,2	6,9	9,4	24	30,6	64,0	29,1
P5/2	(Bv)-TCv	80-90cm	1	4,2	7,6	12,8	6,2	25,6	29,1	60,9	26,5
P5/3	ICv (LR)	>90cm	0	0	0	0	5	31,1	32,6	68,7	31,4
P6/1	Bvh	0-5cm	0,1	0,4	3	3,5	9,1	27	31,8	67,9	28,6
P6/2	Bv+T	5-38cm	0	0	4,1	4,1	11,9	25	29,5	66,4	30,1
P6/3	mCv (LR)	>38cm	0	0	0	6,8	6,8	28,5	28,9	64,2	30,1
P7/1	AhBy	0-5cm	0	0	12,1	12,1	12,1	22,1	31	65,2	22,9
P7/2	T	5-32cm	1,9	_1	3,7	6,6	6,5	21,4	32,3	60,2	33,3
P7/3	mCv (LR)	32-40cm	0	0,5	5,2	5,7	8,5	25,9	33,5	67,9	26,4
1) LR =	Lösungsrück Schluff- u. T	stand der C	-Horizonte : es Residuu	aus Reiche ms nach B	nhaller Sch ehandlung r	ichten. De nit 10%ige	er Feinbod er HCI.	en <2mm	der C-Ho	orizonte rep	oräsen-

Tab. 50: Bodenarten der Feinerde und Komparameter der autochthonen Böden, Östliche Karwendelgrube.

Boden- horizont	Bodenart 1)	Bodenarten- gruppe	Haupt- gruppe 1)	U/T-Quotient für die Horizontgruppe ²⁾	gU (63-20µm) [%]	mU/gU	fU / gU
Bvh, Ah+Bv	schluffiger L st toniger U st schluffiger T	Tonschluff Tonschluff Schluffton	U U T	2,4	11,3	2,2	2,8
Bv+T, (Bv)-TCv	mittel schluffiger T st schluffiger T	Schluffton Schluffton	T	1,8	7,5	2,6	3,7
T	mittel schluffiger T	Schluffton	T	1,8	6,5	3,3	5,0
1) S = San 2) Berechr	id, U = Schluff, L = Le nungsgrundlage für al	hm, T = Ton; E le Quotienten: k	Definition nation nation for the second s	ch AG BODEN (1996, S daten der Einzelhorizon	5. 135-140) hte; T-Horizont nu	r 5 Werte!	

Tab. 51: Profile von autochthonen Mineralböden auf der Reiteralpe.

Substrattyp: Fels und Schutt	Profile	Bodentypen	Horizontierung
Dachsteinkalk, weiß	RA_P20 /DF 1 RA_P5	Pechrendzina Flachgründige Terra fusca-Rendzina	L / Of / Oh / mCv Bv-T / mCn
Dachsteinkalk, rotge- ädert	RA_P1 RA_P8	Rendzina-Terra fusca Braunerde-Rendzina	Ah/Bv-T/mCv Oh/Bv-T/mCv
Dachsteinkalk mit schwimmenden Scher- ben	RA_P11, P12	Braunerde-Rendzina	Ah / Bv-T / mCv
Dachsteinkalk, rot bis rosa	RA_P3 RA_P7	Rendzina-Terra fusca Mitteloründioe Terra fusca aus Hanoschutt	Ah / Ah+Bv-Tc / mCv Ah / T /TCv / ICv
Dachsteinkalk rot, brekzi- iert	RA_P2 RA_P16	Rendzina-Terra fusca Braunerde-Rendzina aus sandig- verwitternder Brekzie	Ah / Bv-T / mCv Ah / Bv1 / Bv2 / mCv
Gosaukalk, z.T. brekziiert	RA_P9 RA_P13	Podsol über Residualton Braunerde, leicht pseudovergleyt	Ahe / Bhs / II Bv-Tc / mCv Ah / Bv / Bv-Sd / mCv
Gosaumergel	P10	Braunerde aus Gosaumergel über Residualton aus Dachsteinkalk	Ah+Bv / Bv / IIBv-T / mCv
Substrattyp: Lokalmoräne in Dolinen	Profile	Bodentypen	Horizontierung
Lokalmoräne aus Dach- steinkalk, Große Doline 1	RA_P 17 /GD1	Pseudogley-Braunerde aus Lokalmoräne von Dachsteinkalk	Ah / Bsv / Sw / II Sd / II Bv / ICv
Geschiebereste in Lokalmoräne, Große Doline 1	RA_P 18 /GD 1	Parabraunerde aus Lokalmoräne mit jura- /gosauzeitlichen Geschieberesten über Kalkverwitterungslehm (reliktisch) aus Dachsteinkalk	Ah / Al / Btv / Bv / II Bt / III Ah / III Bt / III Bv / ICn
Lokalmoräne aus Dach- steinkalk, Dolinenfeld 1	RA_P 19 /DF 1	Podsolige Braunerde aus schluffreicher Lokalmoräne	Ahe / Ae / Bsv / ICv

gen Tone der Bv+T-Horizonte stimmen auch hier mit den Tongehalten der Residuen überein. Die geringen Werte der U/T-Quotienten und das Vorherrschen der Hauptbodenart Ton spiegeln den residualen Charakter der T-Horizonte wider. Sie sind am Aufbau der Terra fusca-Rendzina ((Ah)/(Bv-)T/mC) aus Reichenhaller Schichten beteiligt. Möchte man am Definitionskriterium des T-Horizonts (> 65 Masse % Ton) festhalten, dann ist auch die Bezeichnung Braunerde-Rendzina ((Ah)/Bvh/ Bv+Cv/ICv) bzw. Braunerde-Terra fusca (Ah/AhBv/Bv-T/C) denkbar (Tab. 50).

4.3.4 Autochthone Böden - Reiteralpe

Die geologische Vielfalt der Ausgangssubstrate bedingt ein großes Spektrum an autochthonen Mineralböden mit Glimmerakkumulation im Oberboden (Tab. 51).

A) Laboranalytische Charakterisierung - Reiteralpe A1. Organische Substanz, pH-Wert und Karbonatgehalt

Maximale Werte an organischer Substanz (45%) werden in den Moderauflagen der Pechrendzina (RA_P20/1)

Abb. 8: Chemische Eigenschaften autochthoner Mineralböden, Reiteralpe (aufsteigende Anordnung der Werte der organischen Substanz).

ermittelt. Die glimmerreichen Oberbodenhorizonte (pH-Werte: 4,1 bis 5,3) sowie die B-Horizonte (pH: 3,9 bis 4,5) sind versauert. Die T-Horizonte der *Terrae fuscae* sowie die residualen Varianten von B-Horizonten (z.B. RA_13/3 Bt-Sd) sind mittel bis stark humos. Die humusvermischten T-Horizonte sind mittel sauer bis schwach alkalisch (pH: 4,5 bis 7,7).

Die pH-Wert abhängigen Verlagerungsprozesse fördern podsolige Braunerden (z.B. RA_P6), Braunerde-Podsole und Podsole (z.B. RA_P9). Entsprechend hoch sind die Humusgehalte (8% bis 15%). Die Bodenfarbe ist rötlich-schwarz (2,5 YR 2.5/1; 2,5 YR 3/2) oder dunkelbraun (7,5 YR 3/2; 7,5 YR 3/3). Auf Gosaukalk sind die Bsh-Horizonte gelbbraun (10 YR 5/8). Humuseinwaschung zeigt sich in einer leichten Pantherfleckung oder Bänderung der B-Horizonte (Abb. 8):

A2. Korngrößenverteilung

Die Korngrößenanalyse zeigt auffällig hohe Sand- und Schluffgehalte in den Oberböden (Einzelwerte Kap. 10.3). Die gebleichten Ahe-Horizonte weisen Werte von 39% auf, die zusammen mit den sauren Humusauflagen die Podsolierung der Braunerden bedingen (z.B. RA_P 9). Die Tongehalte kennzeichnen markant die flach- und mittelgründige Terra fusca (RA_P5; RA_P7) auf Hangschutt. Tonakkumulation bedingt häufig Staunässe (Bt-Sd, T-Sd; Bsv) und führt zur Ausbildung von Braunerde-Pseudogleyen (z.B. RA_P 10). In Dolinen tritt Pseudovergleyung über liegenden Geschiebelehmen auf (RA_P 18 DG 1). Schließlich sind im Reitertrett auf tonigen Gosaumergeln (z.B. RA_P 10) verschiedene Stadien hydromorpher Böden (Pseudogley, Gley, anmoorige Böden) typisch. Die hohen Sandgehalte der Oberböden sind allochthon zu werten.

Hingegen zeigen die Korngrößenanalysen der Residuen (Einzelwerte, Kap. 10.5), dass Sand in den B-Horizonten auch aus der autochthonen Verwitterung der quarzithaltigen Gosaukalke (z.B. P9) sowie der brekziierten Dachsteinkalkvarianten (z.B. P 2/1; P 11/2) stammt. Die entsprechenden B-Horizonte gehören den Sandlehmen an, während die Residuen der anderen Gesteinstypen vorwiegend Schlufftone markieren. Eine Übereinstimmung der Textur zu den überlagernden B- bzw. T-Horizonten zeigt sich aufgrund unterschiedlicher Verwitterungsgrade der Horizonte nicht immer (Tab. 52).

Tab. 52: Bodenartengruppen von Gesteinsresiduen und Bodenhorizonten, Reiteralpe.

Substrat, liegende C-Horizonte 1)	Bodenartengruppe 2)	Hauptgruppe	Hangende B- u. T-Horizonte 2)	Hauptgruppe
Dk, sandig verwitternd, LR	Sandlehme	Lehm	Sandlehme	Lehm
Dk, rot brekziiert, LR	Schlufftone	Ton	typische Lehme	Lehm
Gosaukalk, Dk rotgeädert, LR	Schlufftone	Ton	Tonschluffe	Schluff
Dachsteinkalk weiß brekziiert, LR	Schlufftone	Ton	Schlufftone	Ton
1) LR = Lösungsrückstand der C	-Horizonte, Dk = Dachs	steinkalk. Der F	einboden <2mm der C-Horizonte	repräsentiert die

Schluff- u. Tonfraktion des Residuums nach Behandlung mit 10% iger HCI.

2) Definition nach AG BODEN (1996, S. 135-140)

Gruppierung	Bodenhori- zont	Bodenart 1)	Bodenar- ten- gruppe 1)	Haupt- gruppe	Mittlerer U/T- Quotient ²⁾	Mittlerer Quotient gU + fS / T 2)
G1: Oberboden	Oh	sandiger U	SU	U	8,2	8.8
(glimmerreich)	Ah, ABv	sw toniger U sandiger U	LU SU	UUU	8,4	6.6
	Ahe, Aeh	schluffiger L sandig-lehmiger U	TU LU	UUU	3,8	3.0
G2: Unterboden	Bv, Bvh, Bhs	mi toniger S	SL	L	3,0	1.4
(sand- und schluff- vermischt)	Btv	st toniger U	TU	U	2,8	1.0
	Bt, Bt-Sd	sw sandiger U mi sandiger L	typ. Lehm typ. Lehm	L	2,3	0,8
G3: Unterboden	Bt-T, TCv	mi schluffiger T	UT	T	1,8	0.4
(lehmig, tonige Residuen)	IIT, T	sw schluffiger T	UT	T	1,0	0,2

Tab. 53: Bodenarten der Feinerde und Komparameter der autochthonen Böden, Reiteralpe.

1) S = Sand, U = Schluff, L = Lehm, T = Ton; Definition nach AG BODEN (1996, S. 135-140)

2) Berechnung der Quotienten: z.B. Schluffgehalt / Tongehalt [%]; Grundlage: Kornanalysedaten der Einzelprofile

Tab. 54: Mittlere Zusammensetzung der Sandfraktion [Gew.-%], Reiteralpe.

Gruppierung	Horizont	gS [%]	mS [%]	fS [%]	Sand [%]	Feinsandinter	vall [%]	
		2000- 630µm	630- 200µm	200- 63µm	2000- 63µm	63-125µm	125-160µm	160-200µm
G1: Oberboden	Oh	0,3	1,3	32,9	34,5	18,9	9,7	4,3
(glimmerreich)	Ah, ABy	0	3,4	17,4	20,8	8,9	5,9	2,6
	Ahe, Aeh	1,5	2,4	34,6	38,5	16,5	14,2	3,9
G2: Unterboden	Bv, Bvh, Bhs	1,9	12,8	23,6	38,3	20,2	9,6	8,5
(sand- und	Btv	0	1,0	9,8	10,8	9,5	0,3	0
schluffvermischt)	Bt, Bt-Sd	3,3	3,1	11,2	17,6	10,2	1,0	0
G3: Unterboden	Bt-T, TCv	0	0,6	1,4	2,0	1,0	0,5	0,5
(lehmig, tonig)	IIT, T	0	1	4,4	5,4	3,9	0,5	0
Staub aus Neu- schnee	(0-1cm)	0	Q	12,2	12,2	10,2	2,0	0
Mittelwertbildung:	Staub: n = 10 je	Probenart, F	Reiteralpe;	Bodenho	rizonte: n un	nfasst 4 bis 6, j	e nach Proben	material

Tab. 55: Relative Mineralhäufigkeit in Horizonten autochthoner Böden, Zugspitzplatt (Methode: RDA).

0 +	+++	++	+ +	0+	Cc>>Dol>Qz Cc>Dol>Alb>Kf
+	++	+	+	+	Cc>Dol>Alb>Kf
+					
	+	tr	++	0	Qz, Kf, Alb>>Cc, Dol
+	++	+	+	+	Cc>Dol>Alb>Kf
+	+	0	+	0	Alb>Cc
+	+	+	0	÷	Hauptkomponente Gibbsit ! Qz>KF>Alb>Cc>Dol
	+ + +	+ ++ + + + +	+ ++ + + + 0 + + +	+ ++ + + + + 0 + + + + 0	+ ++ + + + + + 0 + 0 + + + 0 + Peak-Höhen an texturlosen Feinbodenprä

 Haldquantitativ aus dem Verhaltnis der Peak-Hohen an texturiosen Feinbodenpraparaten: +++ = dominant, ++ = vier, + = wenig; Qz = Quarz; Kf= Kalifeldspat; Alb = Albit; Cc = Calcit; Dol = Dolomit; tr = trace, Spuren (Durchführung: U. RAST, GLA, München; K. KNABE, Uni Karlsruhe)

2) Differenzierung zwischen Illit und Glimmer nicht immer möglich; Tonmineral (Aufweitung > 10 Å)

Tab.	56: Relative	Tonmineralgehalte in	Horizonten	autochthoner Böden,	Zugspitzplatt	(Methode: RDA,	Texturpräparat).
		0					

Probenmaterial	Relative Tonmineralgehalte in der Fraktion <0,002mm [Rel%]					Kommentar		
	MLiin 1)	Illit 2)	Kt 3)	Ct 3)	Menge	Kristallisation Angabe Angabe Angabe Angabe Angabe gut - - 6 Montmorillc	Quellfähigkeit	
Protorendzina (ZP_P 3, Aih 0-3cm)	6	51qu	20	23	keine /	Angabe		
Pechrendzina (ZP_P33, Of +Oh 0-10cm)	0	35qu	65	0	keine Angabe			
Mullartige Rendzina (ZP_P4, Ah 0-18cm)	7	55	3	35	keine Angabe			
Reife Polsterrendzina (ZP_P 29, Oh 0-17cm)	4	63	6	27	keine Angabe			
ZP_P 29, T (20-21cm)	0	37	29	34	keine /	Angabe	2.4	
ZP_P 34, T (20-25cm)	6	6	42	46	hoch	gut	keine	
Lösungsresiduum Wettersteinkalk 4)	0	+++	++	+	-	¥	× .	
Sammelprobe Staub	25	36	15	24	-	2		
Saharastaub (CHESTER & JOHNSON 1971a)	-	40	50	5	und 5%	6 Montmorillor	nit	
Saharastaub (COUDÉ-GAUSSEN 1982)	9	34	29	12	und 25	% Smektit		
1) MI - unregelmäßige illitreiche Wechselle	aorupasm	inorala						

ML_{ilit} = unregelmäßige illitreiche Wechsellagerungsminerale

2) Illite (10 Å-Mineral, teilweise randlich aufweitbar), Index zeigt randliche Aufweitung der Schichten an

Kaolinit (7 Å-Mineral); Chlorit (7 Å-Mineral)

4) +++ = dominant (30-60%); ++ = viel (10-30%); + = wenig (1-10%); (Analyse: K. KNABE, Univ. Karlsruhe)

B) Pedologische Indikatoren f ür rezenten Flugstaub - Reiteralpe

B1. Kornparameter

Die hohen Werte der mittleren U/T-Quotienten zeigen in den Oberbodenhorizonten äolischen Einfluss an, während sie für die Bv-Horizonte das sandige Ausgangssubstrat markieren. Der Wechsel zum autochthonen Kalkverwitterungslehm vollzieht sich bei den Bt-Horizonten mit dem Wert 2,3. Das Terra-Material ist markant durch Quotientenwerte von < 2 gekennzeichnet (Tab. 53).

B2. Schluff-Fraktion (63 µm bis 2 µm)

Die Zusammensetzung der Schluff-Fraktion unterstützt die bereits in Tabelle 53 getroffene genetische Einteilung der Horizonte in drei Gruppen (Einzelwerte Kap. 10. 3). In der Gruppe 1 (äolisch geprägte Ah- und B-Horizonte) tritt der Grobschluff auffällig hervor. Die Gruppe 2 umfasst B-Horizonte mit dem Maximum im Mittel-schluff. Die fortgeschrittene Horizontverwitterung drückt sich noch stärker in den Bt- und T-Horizonten der Gruppe 3 aus, die deutlich von Mittel- und Feinschluff dominiert ist.

B3. Sandfraktion (200 µm bis 63 µm)

In den Ah- und Oh-Horizonten sowie den gekappten B-Horizonten dominiert in den meisten Fällen der Feinsand (Mittel: 24% und 35%). Auf sandig verwitternden C-Horizonten (z.B. Gosau: RA_P9, P10) sowie auf Brekzien (z.B. Dachsteinkalk: RA_P 11) tritt Mittelsand (1% bis 13%) hinzu. Grobsand (2% bis 3%) findet sich nur in Füllungen von Kluftkarren (RA_P2, P3) sowie in Verwitterungsbändern über den C-Horizonten. Abgesehen von den genannten Beispielen, nimmt der Sand i.d.R. mit der Bodentiefe (RA_P 7/2) ab.

Der Vergleich der Feinsandfraktionen von Flugstäuben und äolisch beeinflussten Oberböden zeigt wieder Ähnlichkeiten. Sie betreffen die Ah- und O-Horizonte sowie die gekappten B-Horizonte der Gruppe 1 (Tab. 54).

4.3.5 Mineralogische Indikatoren für rezenten Staubeintrag

A) Zugspitzplatt

A1. Silikatische Leichtminerale (Methode: RDA) -Zugspitzplatt

Häufig dominieren Quarz und Hellglimmer. Als Nebenkomponenten treten je nach Bodentyp Calzit und Dolomit auf. Die Feldspäte (vor allem Albit) sind sekundär in den organischen Horizonten angereichert, da im sauren Bodenmilieu der Humusauflagen Calzit und Dolomit verstärkt ausgemerzt werden (Tab. 55).

Die Tonmineralverteilung in ausgewählten Horizonten zeigt meist Illite und illitreiche Wechsellagerungsminerale (Tab. 56).

Interpretation:

Die <u>Illite</u> dominieren primär im Staubmaterial (Kap. 4.2) und bilden in den initialen Böden die Tonfraktion der Flugstäube (4 Vol.% bis 26 Vol.-%). In den reiferen Horizonten stammen sie aus der sekundären Silikatverwitterung.

Chlorit im Oberboden ist als äolischer Indikator zu werten, da er aus primären Chloriten oder sekundär aus der Glimmerverwitterung stammt. Eine autigene Herkunft ist wegen der geringen Chloritmengen im Residuum des Wettersteinkalks (1% bis 5 Gew.-%) von untergeordneter Bedeutung. Das ist auch von anderen mesozoischen Kalksteinen bekannt (KHAN 1960; KUBIENA 1945; KUHLE-MANN et al. 1999). Allerdings kann bei entsprechend hohen pH-Werten ein hoher Glimmer- und Illitanteil in der Tonfraktion (im Mittel 87%) des Lösungsresiduums auch eine Quelle für autigenen Chlorit sein. Die für eine Al-Chloritisierung nötigen hohen Al₂O₃ Gehalte von 29% (RFA-Bestimmung) sind in den Proben vorhanden, allerdings wirkt das mäßig saure Milieu stark verzögernd (SCHEFFER et al. 1985).

Der Kaolinitgehalt in der Proto- und Pechrendzina ist äolisch, in reiferen Horizonten auch aus den Feldspäten

	Oxide (RFA) [G	ew%]				Geochemische	e Indices
Horizont	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO+ MgO	K20	TiO ₂	Al2O3 / Fe2O3	SiO2/ Al2O3
Protorendzina ZP_P 3, Aih (0-3cm)	5,3	2,6	1,1	45,1	0,38	0,14	2,4	2,0
Pechrendzina ZP_P33, Of+Oh (0-10cm)	6,4	2,8	2,1	6,0	0,41	0,15	1,3	2,3
Mullartige Rendzina ZP_P4, Ah (0-18cm)	34,2	8,1	6,1	23,1	1,19	0,55	1,3	4,2
Reife Polsterrendzina ZP_P 29, Oh (0-17cm)	39,1	9,9	3,4	3,0	2,28	0,91	2,9	3,9
ZP_P 29, Oh+T (17-20cm)	36,4	18,3	6,1	3,7	1,43	0,89	3,0	2,0
ZP_P 29, T (20-21cm)	35,2	28,8	12,8	4,7	2,12	1,00	2,3	1,3
ZP_P 34, T (20-25cm)	20,1	38,5	14,2	1,8	0,59	1,64	2,7	0,5

Tab. 58: Schwermineralspektren von autochthonen Rendzina-Typen, Zugspitzplatt.

			1					•111111				
Probe	G	Z	T	R	Ap	St	Di	And	Hbl	Ep+Zo	Sonstige	Kornsumme
Syrosem-Rendzina, P3 AhCv	29	3	0	0	0	6	0	0	32	29	0	43 1)
Typ. Polsterrendzina, P33 Of+Oh	36	7	<1	3	0	1	<1	0	30	22	<1	214
Reife Polsterrendzina, P29 Oh	17	46	4	0	0	4	0	0	15	13	0	31 1)

¹⁾ Beachte schlechtere Statistik wegen geringer Kompopulation!

hervorgegangen. Aufgrund der geringen Kaliumwerte wird im mittel saurem Milieu (pH: 5,8) der Pechrendzina bei entsprechend geringer SI-Konzentration verstärkt Kaolinit (65 Gew.-%) gebildet.

In den T-Horizonten ist der Kaolinitgehalt typischerweise gesteinsbürtig und zeigt besonders im alkalisch bis neutralen Milieu über lange Zeiträume Beständigkeit (BIRKLAND 1974; BRONGER 1976; ROBBINS und KELLER 1952; VAN HOUTEN 1953; ZECH und VÖLKL 1979). Das trifft auch für den Wettersteinkalk zu, dessen Lösungsrückstand Illit-Dominanz, gefolgt von Kaolinit zeigt.

Darüber hinaus findet gerade in Terrae fuscae aus reinen Kalksteinen auf Kosten der Glimmer und Illite verstärkt Kaolinit-Neubildung statt (BRONGER und KALK 1979). Deshalb bestimmen in den Terra-Horizonten Kaolinite gefolgt von Illiten (z.T. Montmorillonite in Terrae rossae) das Spektrum, während die entsprechenden Lösungsresiduen des Anstehenden die umgekehrte Reihenfolge aufweisen (KHAN 1960; MACLEOD 1980; MORESI und MONGELLI 1988). Der hohe Kaolinitgehalt von 42% spricht für intensive Verwitterung und ein hohes Alter der Karrenfüllung ZP_P34.

A2. Haupt- und Spurenelemente (Methode: RFA) - Zugspitzplatt

Der Mineralbestand zeigt sich auch in der Verteilung ausgewählter Oxide (Tab. 57).

Interpretation:

Ein wichtiger rezent-äolischer Indikator ist Titanoxid. das mit Werten zwischen 0,1% und 0,6% dem Alter dieser Böden entsprechend einen geringen Verwitterungsstatus dokumentiert. Titan ist am Aufbau von Biotiten, Amphibolen oder verwitterungsstabilen Mineralen wie Illmenit, Titanit oder Rutil beteiligt, die typisch in Magmatiten vorkommen. Der hohe Titanoxid-Gehalt der T-Horizonte von mehr als 1% wird auf Rutil zurückgeführt und bezeichnet stark verwitterte Böden (SCHEFFER et al. 1989). Ebenso ist Titan häufig in Kombination mit Eisenkonkretionen zu finden. Die Erzlagerstätten im Wettersteinkalk erklären die Anreicherung in den T-Horizonten. Die Verwitterungsgrade der Bodentypen drücken sich in den geochemischen Indices (Tab. 57) und dem Anstieg der Al- und Fe-Oxide aus. Deutlich abgesetzt ist die Karrenfüllung (ZP_P34). Der außergewöhnlich hohe Aluminiumoxid-Gehalt (38,5%) spiegelt den detektierten Gibbsit wider. Da das Gesteinsresiduum Illit- und Kaolinitdominanz zeigt, könnte die Karrenfüllung möglicherweise einen tertiären Braunlehmrest repräsentieren.

A3. Schwermineralbestand - Zugspitzplatt

Die Spektren von drei Referenzproben zeigen eisenreiche Glieder der Epidotgruppe, Hornblende und Granat, bei generell geringer Häufigkeit der Resistenten (Zirkon, Turmalin, Rutil, Staurolith). Beachtenswert ist auch, dass die Stabilen vom AhCv-Horizont zum Oh-Horizont der reifen Polsterrendzina zunehmen (46 Rel.-%). In den initialen AhCv-Horizonten ist die Schwermineralmenge (gelblich bis hellbraun) gering, in den O-Horizonten mäßig. Vereinzelt treten Reste von sphärischen Kieselalgen auf (Tab. 58).

Interpretation:

Der gute Rundungsgrad der Zirkone wird äolisch interpretiert und deutet längere Transportstrecken sowie arides Verwitterungsmilieu (z.B. Reptation, Saltation) an. Zusätzlich hat beim Sekundärtransport in das Bodensystem auch mechanische oder chemische Rundung durch Schmelzwässer stattgefunden, wie die narbigen Zirkonoberflächen zeigen (GROMOLL 1990). Die Spektren der Referenzproben beweisen allochthone Stäube im Bodensystem. Die gerundeten Quarze und Zirkone sowie die Kieselalgenreste belegen Saharastaub.

B) Karwendelgruben

B1. Silikatische Leichtminerale (Methode: RDA) -Karwendelgruben

In allen Böden der Westlichen Karwendelgrube finden sich Fremdminerale. Am auffälligsten sind Hellglimmer. Hingegen zeigen die Terra fusca-Rendzinen aus Reichenhaller Schichten in der Östlichen Karwendelgrube (z.B. ÖK_B7) nur Spuren von Hellglimmer und Quarz. Als Nebenkomponenten treten Calzit und Dolomit stärker in den autochthonen Böden auf Muschelkalk auf, während sie im versauertem Milieu der Terra fusca-Rendzina chemisch bereits gelöst wurden (Tab. 59).

Interpretation:

Während in der WKG Plagioklase vorherrschen, sind in den residualen Böden aus Reichenhaller Brekzien Orthoklase in erster Häufigkeit vorhanden. Dies ist ein Hinweis für Substratunterschiede. Wieder dominieren illit-

Qz 2)	Kf	Albit	Cc	Dol	Glimmer /Illit 3)	Chlorit	Reihung der Komponenten
+	tr	+	++	++	+	+	Cc>>Dol>Qz
+++	+	+	++	+	+	+	Qz>Cc>Do!>Alb>Kf
++	+	+	0	+	ţr	+	Qz>Kf>Alb> Dol; Lepidokrokit
++	+	tr	0	0	tr	*	Qz>Kf>>Alb
+++	÷	++	+	+	++	0	Qz>Alb>> Kf; Cc> Dol
	Qz ²⁾ + +++ ++ ++	Qz ²⁾ Kf + tr +++ + ++ + ++ +	Qz ²) Kf Albit + tr + +++ + + +++ + + +++ + tr +++ + + +++ + +	Qz ²) Kf Albit Cc + tr + ++ +++ + + ++ +++ + + 0 +++ + tr 0 +++ + ++ +	Qz ²) Kf Albit Cc Dol + tr + ++ ++ +++ + + ++ + ++ + + 0 + +++ + tr 0 0 +++ + ++ + +	Qz 2) Kf Albit Cc Dol Glimmer //llit 3) + tr + ++ ++ + +++ + + ++ + + +++ + + ++ + + +++ + + 0 + tr +++ + tr 0 0 tr +++ + ++ + ++ ++	Qz 2) Kf Albit Cc Dol Glimmer //Illit 3) Chlorit + tr + ++ ++ + + + +++ + + ++ + + + + +++ + + ++ + + + + +++ + + 0 + tr + +++ + tr 0 0 tr + +++ + + + + 0 0 tr +++ + + + + + 0 0 tr

Tab. 59: Relative Mineralhäufigkeit in Horizonten autochthoner Böden, Karwendelgruben (Methode: RDA).

eigit

2) Semiguantitative Bestimmung aus dem Verhältnis der Peak-Höhen an texturlosen Feinbodenpräparaten: +++ = dominant; ++ = viel; + = wenig; Qz = Quarz; Kf= Kalifeldspat; Alb = Albit; Cc = Calcit; Dol = Dolomit; tr = trace. Spuren (Durchführung: U. RAST, GLA, München)

Differenzierung zwischen Illit und Glimmer nicht möglich; Tonmineral (Aufweitung > 10 Å) 3)

Tab. 60: Relative Tonmineralgehalte in autochthonen Böden, Karwendelgruben (Methode: RDA, Texturpräparat).

Probenmaterial	Relative Tonmineralgehalte in der Fraktion <0,002mm [Rel%]							
	MLmit 1)	IIIit 2)	Kt 3)	Ct 3)				
Syrosem-Rendzina, WKG_P 4, Ah (0-10cm) auf mk	1645	57qu	0	27				
Pechrendzina, KG_P 10, Of+Oh (O-18cm) auf mk	keine Analyse, da zu wenig Tonmaterial							
Braunerde-Rendzina, ÖKG_B 5, Bvh (0-80cm) aus rh	7	55	3	35				
Terra fusca-Rendzina, ÖKG_B7, T (5-32cm) aus rh	9	53	6	32				
Äolische Mullrendzina, WKG_P12, Ah (0-35cm) auf mk	11	55	0	34				
 ML_{ilitt} = unregelmäßige illitreiche Wechsellagerungsm Illite (10 Å-Mineral, teilweise randlich aufweitbar), Inde Mineral) 	inerale ex zeigt randlic	the Aufweitung d	er Schichten an	Kaolinit (7 Å				

Kaolinit (7 Å-Mineral); Chlorit (7 Å-Mineral) 3)

Tab. 61: Ausgewählte geochemische Parameter, Karwendelgruben (Einzeldaten: RFA):

Horizont		Ox		Geochemische Indices				
	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO+ MgO	K20	TiO ₂	Al ₂ O ₃ / Fe ₂ O ₃	SiO ₂ / Al ₂ O ₃
Syrosem-Rendzina WKG_P 4, Ah (0-10cm) auf mk	64,0	8,6	6,1	4,1	1,43	0,44	1,4	7,4
Pechrendzina KG_P 10, Of+Oh (O-18cm) auf mk	39,5	6,2	5,2	18,1	1,11	0,55	1,2	6,4
Braunerde-Rendzina ÖKG_B 5, Bvh (0-80cm) aus rh	53,7	15,3	7,5	6,3	6,32	0,67	2,0	3,5
Terra fusca-Rendzina ÖKG_B7, T (5-32cm) aus rh	39,1	9,9	3,4	3,0	2,28	0,91	2,9	3,9
Äolische Mullrendzina WKG_P12, Ah (0-35cm) auf mk	85,6	4,7	3,2	1,4	0,74	0,29	1,5	18,2

Tab. 62: Schwermineralspektren ausgewählter Bodenhorizonte, Karwendelgruben.

	Gesa	mtspek	trum (I	Kornza	ahl- %); Fra	aktion	0,1mm	1-0,25r	nm		
Probe	G	Z	T	R	Ap	St	Di	And	Hbl	Ep+Zo	Sonstige	Kornsumme
Äolische Mullrendzina, P11 Ah	42	5	0	3	1	1	0	0	10	38	0	250
Typ. Polsterrendzina, P7 Of+Oh	14	22	6	4	3	3	0	0	18	30	0	210
Braunerde-Rendzina, P5 Bvh-T (ÖKG)	20	0	7	2	2	10	0	0	7	51	0	50 1)
G = Granat; Z = Zirkon (+ Xer Andalusit; Hbl = Hornblende; ¹⁾ Beachte schlechtere Statist	notim + Ep+Zo ik wege	Monazi = Epido	t), T = t (+ Zo	Turma bisit + I	alin; R Klinozo	= Ruti oisit +	il; Ap feink	= Apat örnige	it; St = Aggreg	Staurolit gate von	h; Di = Disth Pumpellyit)	nen, And =

reiche Wechsellagerungsminerale und Illite das Tonmineralspektrum. In den äolisch geprägten Böden der WKG fehlt Kaolinit, tritt aber in den Böden aus Reichenhaller Schichten in der ÖKG auf (3 Rel.% bis 6 Rel.%). Damit sind die residualen T-Horizonte ähnlich wie im Wettersteingebirge durch Kaolinit markiert, wenn auch in weit geringeren Mengen (Tab. 60).

Interpretation:

Kaolinit ist ein Indikator für autochthone Substratherkunft. Das Fehlen von Kaolinit in der Syrosem-Rendzina wird mit ihrem geringen Verwitterungsstatus erklärt, obwohl die Oxidverteilung einen K₂O-Gehalt von 1,43% zeigt. Die äolische Mullrendzina hingegen fällt im Röntgenspektrum durch Albit-Dominanz auf, entsprechend gering ist der K₂O-Gehalt (0,74%).

B2. Haupt- und Spurenelemente (Methode: RFA) -Karwendelgruben

Die Sonderstellung der äolischen Mullrendzina wird durch den sehr hohen Siliziumoxidgehalt (86%) deutlich. Hingegen zeichnet sich der residuale T-Horizont (ÖK_B7) durch die höchsten Werte an Titanoxid (0,9%) aus (Tab. 61).

Interpretation:

Der hohe Gehalt an Titanoxid wird mit der Anwesenheit von Eisen in den Brekzien erklärt, da Magnetitkörner im

52

Schwermineralspektrum nicht selten sind. Der höhere Entwicklungsgrad der residualen Böden der ÖKG wird auch durch die fast doppelt so hohen Verhältnisse von Al₂O₃ / Fe₂O₃ beschrieben.

B3. Schwermineralbestand - Karwendelgruben

Die Schwermineralmenge der Oh-Horizonte ist gering bis mäßig, in den Bvh-T-Horizonten gering bis sehr gering (Kornpopulationen: 33 bis 50). Der chemisch verwitterungslabile Granat ist im Oh-Horizont (pH: 5,1) zugunsten von Hornblende, Epidot+Zoisit reduziert. Auffällig ist hier die relative Anreicherung der Stabilen (Quarz, Turmalin) sowie von gerundeten Zirkonen. Der Ah-Horizont der äolischen Mullrendzina weist hingegen einen doppelt so hohen Granatanteil wie die braunen Horizonte der ÖKG auf (Tab. 62).

Interpretation:

Die relative Anreicherung von Granat in der äolischen Mullrendzina wird durch ihren geringeren Entwicklungsstand und den mittel sauren pH-Wert (5,5) erklärt. In den braunen Bvh-T-Horizonten ist Granat stark angelöst, während die Hornblende noch frisch erscheint. Dies belegt die unterschiedlichen Verwitterungsstabilitäten im z.T. sauren Milieu der Mineralhorizonte. Den höheren Verwitterungsgrad der braunen Horizonte unterstreicht auch die Abnahme der Kornfraktion der Minerale < 0,1 mm. Deutlich wird der residuale Charakter in der Terra fusca-Rendzina aus Reichenhaller Schichten (ÖK_B7). Hier wurden nur noch 12 Granate, drei Zirkone, ein Rutil, ein Staurolith und fünf Hornblenden identifiziert.

C) Reiteralpe

C1. Silikatische Leichtminerale (Methode: RDA) -Reiteralpe

Die Referenzproben beziehen sich auf autochthone Braunerde-Typen, eine mittelgründige Terra fusca sowie eine glimmerreiche Pechrendzina (RA_P8/1). Quarz, Albit und Kalifeldspäte prägen die Spektren. Glimmer ist im Oberboden angereichert, während mit zunehmender Solumtiefe Illite dominieren. Neben mixed-layer Material dominiert Illit, gefolgt von Kaolinit und Chlorit. Im sauren Milieu der podsoligen Braunerden sind die Illite an Kalium verarmt und in Bodenchlorit umgewandelt. Dabei steigt der Chlorit-Gehalt in den B-Horizonten an (27 Rel.-% bis 33 Rel.-%), während die Residualtone neben Illit in zweiter Häufigkeit bereits Kaolinit zeigen (Tab. 63).

C2. Haupt- und Spurenelemente (Methode: RFA) -Reiteralpe

SiO₂ tritt in allen Horizonten auf und beträgt in den Braunerden zwischen 50% und 59% (z.B. RA_P10). Stärker schwanken die Gehalte in den podsoligen Varianten (49% bis 59%) und den pseudovergleyten Braunerden (39% bis 62%), wobei eine generelle Abnahme mit der Profil- und Horizonttiefe eintritt. Der geringste Gehalt (6,5%) wird in der Pechrendzina ermittelt. Hier sind wieder gerundete Zirkone mit narbiger Oberfläche sowie prismatische, idiomorphe Zirkone bewerkenswert. Auffällig sind auch die hohen Prozentgehalte an Fe_2O_3 und Al_2O_3 , die mit den Daten von K_2O und TiO_2 eine intensive Verwitterung der Mineralböden anzeigen. Der hohe K_2O -Wert im T-Horizont ist an Kaolinit (27 Rel.-%) gekoppelt (Tab. 64)

C3. Schwermineralbestand - Reiteralpe

Generell liegen die Anteile von Hornblende und Epidot+Zoisit in den mineralischen Horizonten sehr hoch (55% bis 68%). An der Bodenoberfläche ist der Zustand von Hornblende und Hellglimmer sehr frisch. Zoisit übersteigt häufig den Epidotgehalt. Mit zunehmender Solumtiefe (ab 10 cm) ist in den B-Horizonten Hornblende und Glimmer sichtbar verwittert. Epidot und Zoisit dominieren die Hornblende oder umgekehrt. Häufig sind auch magnetische Minerale mit schwankenden Anteilen sowie vereinzelt Chloritoide. Sie weisen auf Gesteine hin, deren Biotite, Amphibole und Pyroxene durch thermale Prozesse chloritisiert wurden. In den residualen Horizonten (Bvt; Bv-T) ist die wenige Hornblen-

Probe	Qz 1)	Kf	Albit	Cc	Dol	Glimmer /Illit ²⁾	Chlorit	Reihung der Komponenten
Oh, Pechrendzina, RA_P8/1	++	+	+	tr	tr	+	0	Qz; Kf, Al >> Cc, Dol
Ahe, Podsol, RA_P 9/1	+++	+	+	+	+	+	+	Qz; Kf, Al >>Cc, Dol
Bv-T, Braunerde-Rendzina RA_P12/2	+++	+	+	0	0	+	+	Qz, Alb>Kf
Bvt, RA_P10/2, Braunerde	+++	+	+	0	0	+	+	Qz, Alb>Kf
Bv-T, RA_P1/1 Brauner- de-Rendzina	++	+	+	+	+	+	+	Qz, Kf, Alb>>Cc, Dol
Terra fusca, T RA_P7/2	+++	+	++	0	0	+	+	Qz>Alb>> Kf
 Semiquantitative Bestin dominant; ++ = viel; + = ren (Durchführung: U. F 	mmung a = wenig; RAST, GI	aus d Qz = _A, M	em Ver Quarz; ünchen)	hältnis Kf= Ka	der P Ilifeldsp	eak-Höhen bat; Alb = Alb	an texturio bit; Cc = Ca	osen Feinbodenpräparaten: +++ a alcit; Dol = Dolomit; tr = trace, Spu

Tab. 63: Relative Mineralhäufigkeit in Horizonten von autochthonen Böden, Reiteralpe (Methode: RDA).

Differenzierung zwischen Illit und Glimmer nicht möglich; TM = Tonmineral (Aufweitung > 10 Å)

Tab. 64: Ausgewählte geochemische Parameter	, Reiteralpe (Basis: Einzeldaten, RFA).
---	---

Horizont	Oxide (R	FA) [Gew	%]	100			Geochemische	e Indices
	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO+ MgO	K ₂ O	TiO ₂	Al ₂ O ₃ / Fe ₂ O ₃	SiO ₂ / Al ₂ O ₃
Oh, Pechrendzina, P8/1	6,5	3,6	1,2	7,0	2,11	0,98	3,0	1,8
Ahe, Podsol, P 9/1	49,1	13,4	6,0	3,0	2,13	0,95	2,2	3,7
Bv-T , Braunerde-Rendzina P12/2	58,5	18,0	8,5	3,2	2,87	0,97	2,1	3,2
Bvt, 10/2, Braunerde	59,4	16,3	6,7	2,3	2,92	1,12	2,4	3,6
Bv-T, 1/1 Braunerde- Rendzina	45,7	17,6	8,2	2,5	1,68	1,06	2,1	2,6
Terra fusca, T RA_P7/2	43,7	22,8	10,1	7,0	3,70	1,14	2,2	1,9

Tab. 65: Schwermineralspektren ausgewählter Bodenhorizonte, Reiteralpe.

	Ge	samts	pektru	m (K	ornzah	11-%);	Frak	ction 0,1	mm-0,2	5mm		
Probe	G	Z	T	R	Ap	St	Di	And	Hbl	Ep+Zo	Chloritoide	Kornsumme
Podsol, P9/1, Ahe	2	1	1	1	1	1	0	0	38	55	0	300
Pechrendzina, P8/1, Oh	35	7	0	2	0	2	0	0	25	29	0	100 1)
BR-Terra fusca, P1/1, Bv-T	37	11	5	8	1	2	2	0	5	29	0	100 1)
Braunerde, P10/1, Bvh	2	2	2	0	2	2	1	0	53	29	7	300
Braunerde, P10/2, Bvt	8	2	1	2	2	3	3	0	20	58	1	100 1)
BR-Rendzina, P12/2, Bv-T	5	6	1	6	2	1	0	0	14	64	1	80 1)
G = Granat; Z = Zirkon (+ Xe	notim	+ Mon	azit),	T=T	urmali	n; R =	Rutil;	Ap = A	patit; St	= Staurol	ith; Di = Disth	en, And =

Andalusit; Hbl = Hornblende; Ep+Zo = Epidot (+ Zoisit + Klinozoisit + feinkörnige Aggregate von Pumpellyit)

¹⁾ Beachte schlechtere Statistik wegen geringer Kompopulation!

de deutlich angelöst, weiß gebleicht oder braunfleckig (Fraktion < 0,1 mm). Epidot übersteigt den Zoisitanteil. Magnetische Minerale sind häufig bis mäßig vorhanden, Karbonatkörner bei hohem Opakanteil nicht selten (Tab. 65).

Interpretation:

Der Erhaltungszustand von Granat hängt vom Bodenmilieu ab. Die sauren Ah- und Ahe-Horizonte (pH: 3,9 bis 4,4) sowie die gekappten Bv-Horizonte (z.B. RA_10/1) zeigen wenig Granat. Ein Anstieg ist in den mittel sauren bis schwach alkalischen Oh- und B-Horizonten zu verzeichnen (35% bis 37%). Auffällig ist die relative Anreicherung der Stabilen in der Karrenfüllung RA_P1/1, wo der hohe Granatgehalt zugleich die Vermischung mit rezentem Staub anzeigt.

Die Cv-Horizonte aus Geschiebemergel (Große Doline 1) zeigen außerordentliche Gehalte an magnetischen Mineralen und leicht angelöstem Granat (55%), der Epidot+Zoisit (30%) übersteigt. Hornblende ist nur mit 3% vertreten. Es wurden 54% CaO, 1% MgO, 1% Fe₂O₃, 1% Al₂O₃, 1% SiO₂ (RFA) sowie Chlorit, Kaolinit und Feldspäte (RDA) ermittelt (DUFFY 2003). Diese Verhältnisse treten in keiner anderen Bodenprobe auf. Das Ergebnis wird durch eine kristallinreiche Grundmoräne erklärt, wie sie GILLITZER (1912, S. 186 ff) im Bereich der Schwegelalm beschreibt.

4.4 Ergebnisse der Analysen von nicht-rezent äolischen Böden

4.4.1 Äolische Deckschichten

Außergewöhnlich sind mächtige glimmerreiche Substratdecken in unterschiedlicher Flächenausdehnung. Eng an sie gebunden sind die verschiedenen Subtypen der Braunerde (Ah/B/IIC) aus der Gruppe II (allochthone Böden) (Foto 2, Kap. 1.4).

Zugspitzplatt:

Die größte zusammenhängende Fläche nehmen die äolischen Substrate auf dem Zugspitzplatt ein. Dort herrschen sie auf SE- bis S-exponierten Hängen zwischen 1950 m and 2150 m vor. Sie sind ausschließlich mit dem reifen Blaugras-Horstseggenrasen (Seslerio-Caricetum semp.) bewachsen. Sie treten reliefdeckend im Karst auf, vermutlich als Reste einer ehemals geschlossenen Deckschicht. Die größten Mächtigkeiten von mehr als 1,5 m (ergrabene Tiefe) erreichen sie als Kolluvien in Karstgassen und Dolinenreihen, die als Tiefenlinien die verkarsteten Schichtköpfe und -flächen voneinander trennen. Zwischen 2150 m und 2230 m werden die äolischen Substrate immer geringmächtiger und verschwinden jenseits von 2250 m.

Westliche Karwendelgrube:

Dort ist das Vorkommen der schluffreichen Substrate auch am Auftreten bestimmter Pflanzengesellschaften festzumachen. Die Kartierungen zeigen hier eine enge Bindung an *Salicetum herbaceae*, dem Silikatkrautweide-Schneeboden mit *Euphrasia minima* (SAITNER 1989; SAITNER und PFADENHAUER 1989). Diese für die Kalkumgebung außergewöhnliche Vegetationsgesellschaft bedeckt die N- und NE-exponierten Hänge (Leehänge) der Großdoline. Ein eng begrenztes Areal von äolischen Substraten befindet sich jedoch auch im Luv, am SE-exponierten Hang der Kirchlwiese am konkaven Hangfuß. In der Östlichen Karwendelgrube fehlen die äolischen Substrate.

Reiteralpe:

Die äolischen Substrate treten ebenfalls in flächenhafter Verbreitung an den S- und SE-exponierten Hängen (Neigung: 20° bis 30°) der Gipfelumrahmung auf. Sie sind zwischen Wartsteinkopf und der Traunsteiner Hütte mit Seslerio-Caricetum semp. bewachsen und ziehen auch in die obere subalpine Stufe hinab. Auch in der subalpinen Stufe des Hagengebirges wurden Deckschichten von ARTMANN und Völkel (1999) gefunden. In anderen Bereichen des Nationalparks sind die Deckschichten als "Äolium-Kolluvium" kartiert (KONNERT 2004). Diese Kennung umschreibt treffend die Profile der vorliegenden Arbeit, die entlang von Wegeinschnitten (Wartstein-Schrecksattel) aufgeschlossen, dort Akkumulationslagen beschreiben. Verschüttete Ah-Horizonte markieren die Materialbewegung in diesen Bodenkomplexen ("humoses Äolium-Kolluvium" n. KONNERT 2004).

Die äolischen Substrate sind die Grundvoraussetzung für das Auftreten von allochthonen Böden. Sie stellen im

periglazialen Milieu der alpinen bis subnivalen Höhenstufe von ZP und WKG eine außerordentliche Besonderheit dar. In der subalpinen bis unteren alpinen Stufe der RA treten diese allochthonen Böden zu den autochthonen Braunerde-Typen und Terrae fuscae- Ähnlichen hinzu. Die Geländeergebnisse zelgen häufig Podsolierung und Pseudovergleyung. Zur Unterscheidung von den autochthonen Braunerden (z.B. aus Gosaukalken) werden sie als Subtypen der Lössbraunerde angesprochen. Eine Zusammenfassung gibt die Tabelle 66.

4.4.2 Allochthone Böden - Zugspitzplatt

Die Mineralböden ((A)/B/IIC) weisen ausgeprägte B-Horizonte von kräftig brauner Farbe auf (10 YR 4/4, 10 YR 5/3, 7.5YR 4/4, 7.5YR 5/4). Wenn vorhanden, sind die A-Horizonte geringmächtig (1 cm bis 5 cm) und grau bis grauschwarz (2.5 Y 3/1; 2.5 Y 4/1; 2.5 Y 5/1).

In Abhängigkeit von der Reliefposition treten zwei genetische Subtypen sowie Mischformen auf (Tab. 67).

Tab. 66: Verbreitung und Kurzcharakteristik der äolischen Substrate.

Zugspitzplatt		Westliche Karwendelgrube	Reiteralpe
Vorkommen	1950m – 2200m	2240m - 2380m	1450m – 1800m
Relieflage	 flächenhaft zwischen 1950m und 2150m Reste als Füllung von Karstformen (Dolinen, Karren, Schachtrei- hen) 	 größere Flächen am N- und NE-exp. Linderhang, Lee kleine Flächen in Akkumulati- onslagen in der Großdoline Reste am SE-Hang des Kirchls, Luv 	 größere Flächen als Decksedi- mente auf ESE- und SE-exp. Hängen, Luv kleinere Flächen verstreut auf dem Karstplateau Reste als Füllung von Karstfor- men
Mächtigkeit	 15cm bis 65cm als Füllung 60cm bis >100cm 	 60cm bis 90cm als Kolluvium 85cm bis 110cm 	 20cm bis 80cm als Füllung 20cm bis >100cm als Kolluvium 60cm bis >120cm
Ansprache	 äolische Deckschicht, lößlehmartig verwittert Kolluvium in Tiefenli- nien (Karstgassen) 	 Hanglöß, lößlehmartig verwit- tert, z.T. Solifluktionslöß Hangkolluvien 	 äollsche Deckschicht, lößlehmar- tig verwittert Kolluvium in Hangfußlage und in Dolinen
Vergesell- schaftete Bodentypen	 Lößbraunerde über Residualton (Terra fusca) aus Wetter- steinkalk 	 Braunerde-Rendzina Lößbraunerde Braunerde über Residuallehm Haftnässepseudogley- Braunerde über Residuallehm aus Muschelkalk 	 Lößbraunerde Lößbraunerde über Terra fusca bzw. Residualton aus Dachstein- kalk oder Gosau Pseudogley-Braunerde Podsolige Braunerde
Überprägung	- leicht podsoliert	 pseudovergleyt und leicht podsoliert 	 pseudovergleyt, podsoliert, pod- solig

Tab. 67: Typen von allochthoner	Böden auf dem Zugspitzplatt.
---------------------------------	------------------------------

	SUBTYP 1	SUBTYP 2	Mischformen
Charakterisierung	Äolische Braunerde über Residualton aus Lokalmoräne	Äolische Braunerde über anstehendem Wetterstein- kalk mit Residualtontapeten	Mischformen auf Lokalmoräne oder Fels ohne horizontgebundene Anreicherung von Residualton
Horizontierung	Ah / Bv / II T / ICv	(Ah) / Bv / II (Tc) / mCv	(Ah) / Bv-T / II Cv (Ah) / Bvt / II Cv
Referenzprofil	ZP_P 17	ZP_P 18, 21	ZP_P 19, 20
Ansprache, vorlie- gende Arbeit	Lößbraunerde über Terra fusca	Lößbraunerde über Wettersteinkalk mit Residualton- tapeten	Lößbeeinflusster Residualton oder: Residualbeeinflusster Lößlehm
Einordnung (AG Boden 1996)	Braunerde über flachgründiger Terra fusca	Braunerde über Kalkstein	Braunerde-Terra fusca
WRB (1998)	Cambisol	Cambisol over Rendzic Leptosol	Cambisol
Einordnung FAO (1990)	Cambisol over Chromic Cambisol	Cambisol	Chromic Cambisol with characte- ristics of Cambisol

Subtyp 1 auf Lokalmoräne beschreibt Braunerden über den T-Horizonten (2 cm bis 5 cm mächtig) der reifen Polsterrendzina, d.h. genetische Mehrschichtprofile. Die Mächtigkeiten liegen zwischen 15 cm und 60 cm.

Subtyp 2 auf anstehendem Fels bezeichnet Lössbraunerden, deren Verwitterungshorizonte taschen- bis zapfenförmig als Karrenfüllungen in den mCv-Horizont ziehen. Der Wettersteinkalk selbst ist löchrig angewittert und nur mit residualen Toncutanen bzw. Lehmtapeten überzogen. In Karstgassen und Dolinen erreichen die kolluvialen Braunerden bis zu 150 cm.

A) Laboranalytische Charakterisierung -Zugspitzplatt

A1. Organische Substanz, pH-Wert und Karbonatgehalt

Die glimmerreichen Ah-Horizonte aus dichtem Wurzelfilz sind stark sauer (pH-Werte: 4,6 bis 5,8) und humos (org. Substanz: 14,3% bis 16,6%). Sie tragen oft Merkmale einer leichten Sauerbleichung.

Die ebenfalls <u>glimmerreichen B-Horizonte</u> sind mittel bis stark humos (org. Substanz Bvh: 3,4% bis 7,7%). Kennzeichen leichter Podsolierung (Bhv) und Lessivierung (Btv) sind die schwache Pantherfleckung, Humusbeläge in den Aggregaten (org. Substanz: 8% bis 15%) sowie entrindete Quarzkörnchen. In gekappten Profilen ist das braune Solum schwach karbonathaltig (bis 5,3%), die pH-Werte liegen zwischen 4,9 und 6,2. Ist ein A-Horizont vorhanden, dann sind die B-Horizonte stets entkalkt.

A2. Korngrößenverteilung

Das Bodengefüge der Ah-Horizonte ist krümelig, jenes der skelettfreien B-Horizonte krümelig bis subpolyedrisch. Die Einzelwerte der Ah- und B-Horizonte zeigen eine klare Dominanz der Schluff-Fraktion, die in den Subtypen 1 und 2 zwischen 73% und 85% (ZP_P17, P18, P21) erreicht. Mittel- und Feinschluff haben entsprechend des Verwitterungsstatus der Lösslehme den größten Anteil. Die Sandfraktion (4% bis 10%) tritt in den Oberböden zurück. Mittelsand ist vermutlich eingespült, da die B-Horizonte sandfrei oder nur schwach feinsandführend (bis 4%) sind. Tongehalte von mehr als 35% zeigen auf Felsstandorten die Nähe zu den residualen T-Horizonten an (Tab. 68).

B) Pedologische Indikatoren f ür äolische Substratherkunft - Zugspitzplatt

B1. Kornparameter

Die Bodenart Schluff kennzeichnet die glimmerreichen Ah-, Bv- und Btv-Horizonte. Die Kornparameter der B-Horizonte zeigen Substrathomogenität an, wobei die wechselnden Tongehalte die Verlehmungsgrade des äolischen Ausgangsmaterials belegen. Hohe Tongehalte (> 35% bis 40%) sind für die Unterbodenhorizonte (Bt- oder Bv-T) der Mischformen auf Fels typisch (U/T: 1,8 bis 2,0). Genetische Zweischichtprofile sind anhand der mittleren U/T-Quotienten ablesbar. Sie betragen für die II T-Horizonte nur noch 1,4 (Tab. 69).

B2. Lithologisch-genetischer Schichtwechsel

Die Substratfolge "Lösslehm über Residualton" ist durch Texturwechsel belegt. In Profil P17 geht stark toniger Schluff im Bv1-Horizont (18,1% Ton; 81,6% Schluff) in mittel schluffigen Ton im II (Bv-)T-Horizont über. Durch intensive holozäne Umlagerung hat eine Vermengung des Lösslehms mit Residualton stattgefunden. Im Vergleich dazu weist das Residualsubstrat der reifen Polsterrendzina (ZP_P29/3) im schwach schluffige Unterboden (ZP_P29/3) bis zu 57,3% an Ton auf (Tab. 70).

4.4.3 Allochthone Böden - Westliche Karwendelgrube

Die vorgestellten Profile zeigen in Abhängigkeit vom Substrat drei Subtypen der Lössßbraunerde (Tab. 71).

Subtyp 1 repräsentiert das noch nicht verbraunte Entwicklungsstadium der <u>äolischen Mullrendzina.</u>

Subtyp 2 bezeichnet <u>flach- bis mittelgründige Löss-</u> braunerden in östlicher Exposition sowie am SE-exponierten Luvhang. Sie besetzen im Verbund mit den autochthonen mullartigen Rendzinen und Polsterrendzinen die Akkumulationslagen (konkav, konvex-konkav) auf Schutt. Die Mächtigkeit der Profile beträgt zwischen 32 cm und 50 cm, jene der B-Horizonte zwischen 8 cm und 48 cm. In der Regel leiten Bv+Cv-Horizonte zum liegenden Muschelkalkschutt über. Je nach Substrat (Fels,

Profil	Horizon	t [cm]	gS 2000- 630µm	mS 630- 200µm	fS 200- 63µm	gU 63- 20µm	mU 20- 6,3µm	fU 6,3- 2μm	Т< 2µт	s [%]	U [%]
Pulsting 4 and 1 alcology	Ah	0-3	0	2,7	2,6	21,3	38,1	19,6	16,1	5,3	79,2
Subtyp 1 auf Lokalmo-	Bv1	3-25	0	0	0,6	26,2	31,8	23,6	18,1	0,6	81,6
	Bv2	25-35	0	0	3,7	26,4	37,4	21	11,7	3,7	84,8
28_81/	IIT	35-37	0	0	0	13,8	28,1	18,3	39,8	0	60,2
Subtyp 2: ZP_P18	II Bv	0-15	0	0	0	18,1	36,7	21,1	24,1	0	75,9
auf Fels, ZP_P21	II Bv	0-20	0	5,7	4,4	16,2	32,0	25,0	16,8	10,1	73,2
Mischform auf Moräne	Ah	0-8	1,2	2,3	3,3	28,1	20,9	19,1	25,1	6,8	68,1
+ Residuum, ZP_P19	II BV-T	8-25	0	0	0	3,2	18,5	36,4	41,8	0	58,1
Mischform + Lößlehm auf Fels, ZP_P20	ll Bvt	0-13	0	0	0	15,7	28,1	21,1	35,1	0	64,9

Tab. 68: Korngrößenverteilung [Gew.-%] allochthoner Böden, Zugspitzplatt.

Tab. 69: Bodenarten der Feinerde und Kornparameter, Zugspitzplatt.

Horizont	Horizont Bodenart 1)	Bodenartengruppe 2)	Haupt-	Komparameter für die Horizontgruppe ³⁾			
) teoletta	Dodonarterigrappe	gruppe	U/T	mU/gU	fU/gU		
Ah	mittel toniger U	Lehmschluff	U	4,9	1,8	0,9	
Bv	mittel toniger U	Lehmschluff	U	5,8	1,7	1,2	
Btv	stark toniger U	Tonschluff	U	3,5	1,3	1,0	
Bt	mittel schluffiger T	Schluffton	T	1,8	1,8	1,3	
II(Bv-)T	mittel schluffiger T	Schluffton	T	1,4	3,9	6,3	
 S = S Defin Darst Einze 	and, U = Schluff, L = ition nach AG BODE! ellung der Quotienter Iprofilen, Für den Ah-	Lehm, T = Ton N (1996, S. 135-140) n als Mittelwerte aus ähnlich Horizont liegen nur 4 Werte	nen Horizonter vor!	n, berechnet au	f den Kornanalyse	edaten [%] von 5	

Tab. 70: Korngrößenvergleich zwischen Lößbraunerde und autochthoner Polsterrendzina.

Referenzprofil	Horizont [cm]		gS 2000- 630µm	mS 630- 200µm	fS 200- 63µm	gU 63- 20µm	mU 20- 6,3µm	fU 6,3- 2µm	T < 2µm
1 20 has mande (likes Deal	17/1 Ah	0-3	0	2,7	2,6	21,3	38,1	19,6	16,1
Loisbraunerde uber Resi-	17/2 Bv1	3-25	0	0	0,6	26,2	31,8	23,6	18,1
	17/3 Bv2	25-35	0	0	3,7	26,4	37,4	21	11,7
2P_F11	17/4 II(Bv)-T	35-37	0	0	0	13,8	28,1	18,3	39,8
Deife Deletemendation	29/1 Oh	0-17	3,2	4,1	7,9	19,1	29,5	14,5	22,8
TO DOO	29/2 Oh+T	17-20	0	1,7	5,4	5,1	20,6	16,3	50,9
25_529	29/3 T	20-22	0	0	0	8,5	10,5	22,7	57,3

Tab. 71: Typen von allochthonen Böden, Westliche Karwendelgrube.

	SUBTYP 1	SUBTYP 2	SUBTYP 3
Charakterisierung	Äolische Mullrendzina über Residualtontapeten aus Muschelkalk	Äolische Braunerde über Residualton aus Mu- schelkalkschutt	Äolische Braunerde über anstehendem Muschelkalk mit Residualtontapeten
Horizontierung	Ah / II (TCv) / mCv	Ah / Bv / Bv+Cv / II (T) / ICv	Bv / II (TCv) / mCv
Referenzprofil	KG_P11, P12	KG_P1,P 2	KG_P3, P4
Ansprache, vorlie- gende Arbeit	Äolische Mullrendzina über Muschelkalk mit Residual- tontapeten	Lößbraunerde über initialer Terra fusca	Kolluviale Lößbraunerde über Muschelkalk mit Residualtontape- ten
Einordnung (AG Boden 1996)	Mullrendzina	Flach- bis mittelgründige Braunerde über Terra fusca	Mittelgründige Braunerde über Kalkstein
Einordnung WRB (1998)	Mollic Leptosol	Cambisol over Calcaric Rego- sol with features of chromic B	Cambisol over Calcaric Leptosol
Einordnung FAO (1990)	Mollic Leptosol	Cambisol over Chromic Cam- bisol	Cambisol

Hangschutt) tritt Grobskelett (1% bis 10%) auf. Die sandigen Ah-Horizonte von Subtyp 2 sind durch frische Glimmerschüppchen, hohe Feinsandgehalte und entrindete Quarzkörner markiert. Je nach Humusdynamik sind sie schwarz (10 YR 2/2) oder dunkelbraun (10 YR 3/1; 10 YR 2/2). Quarzkörner, diffuse Fleckung und Bleichung beweisen leichte Podsolierung.

Die B-Horizonte sind deutlich glimmerführend und hellgelb bis braun (10 YR 6/3; 10 YR 5/6; 10 YR 5/8). Der Bewuchs ist vielfältig (*Caricetum firmae, Salicetum herbaceae, Seslerio-Caricetum semp.*). Subtyp 3 markiert <u>mittelgründige Lössbraunerden</u> von großer Mächtigkeit (60 cm bis 90 cm) in N- und NE-Exposition. Der Bewuchs ist ausschließlich *Salicetum herbaceae*. Die starke Hangneigung bedingt kolluviale Überprägung. Subtyp 3 tritt meist über unterschiedlich verwittertem Fels auf und zeigt an diesem Übergang erhöhte Tongehalte, die Hangzugwasser stauen. Das Resultat sind Nano-Pseudogleye. Ah-Horizonte fehlen oder sind nur geringmächtig (< 2 cm) als dichter Wurzelfilz vorhanden. Die braunen bis braungelben B-Horizonte sind sehr stark glimmerführend.

Profil	Horizont	gS 2000- 630µm	mS 630- 200μm	fS 200- 63µm	gU 63- 20μm	mU 20- 6,3µm	fU 6,3- 2µm	Ţ< 2µm	s [%]	U [%]
Subtyp 1:	Ah 11/1	6,8	15,1	49,9	13,2	6,2	5,8	3	71,8	25,2
Äolische Mullrendzina	Ah 12/1	4,2	12,3	42,4	18,1	9,8	7,4	5,8	58,9	35,3
Subtyp 2:	Aeh 1/1	11,8	13,6	13,1	12,4	17,6	16,8	14,7	38,5	46,8
Flachgründige	Bv 1/2	11,4	12,1	10	9	18,6	20,5	18,4	33,5	48,1
Lößbraunerde	Bv-TIICv	5,3	11,5	20,1	18,1	18,9	3,9	22,1	36,9	40,9
	AhBv 2/1	15,1	28,1	21,1	15,2	7,6	6,8	6,1	64,3	29,6
	Bv 2/2	14,4	14,7	12,5	9,3	18,1	17,1	13,9	41,6	44,5
the state of the state of the	Bv+IICv 2/3	8,5	10,3	15,6	11,9	14,9	19,8	19	34,4	46,6
Subtyp 3:	Bv1 3/1	10,0	10,3	13,3	13,8	15,1	23,1	14,4	33,6	52,0
Mittelgründige	Bv2 3/2	7,5	12,2	10,2	14,8	17,8	21,2	16,3	29,9	53,8
Lößbraunerde	AhBv 4/1	5,8	12,3	23,8	18,1	19,8	12,1	7,9	41,9	50
I SHE STREET	Bv 4/2	2,3	9,0	18,0	14,7	17,1	19,6	19,3	29,3	51,4

Tab.	72: Korngrößenverteilung	Gew%] allochthoner Böden,	Westliche Karwendelgrube.
Tab.	12. Nongrobenvertending	dew. vojanourinoner boden,	weathene narwenueigrube

Tab. 73: Bodenarten der Feinerde und Kornparameter, Westliche Karwendelgrube.

Bodenhorizont	Bodenartengruppe	Haupt-	Kornparameter für die Horizontgruppe ²⁾			
		gruppe "	U/T	mU/gU	fU/gU	
Ah, Mullrendzina, äolisch	Schluffsand	S	7,2	0,5	0,4	
Ah, Lößbraunerden	Schluffsand	S	4,1	0,9	1,4	
Ah-Bv, Lößbraunerden	Schlufflehm Sandlehm	L	5,8	1,1	0,7	
Bv, Lößbraunerde, gekappte Profile	Sandlehm Lehmschluff	U	3,4 2,5	1,1	1,4	
Bv	Typ. Lehm Tonschluff	L	2,1	1,6	1,5	
Bv-II mCv ; Bv-II ICv	typ. Lehm	E	2,1	1,1	0,9	
II I Cv, II mCv Residuum	Schluffton	Т	1,5	21	28	

1) S = Sand, U = Schluff, L = Lehm, T = Ton, Definition nach AG BODEN (1996, S. 135-140)

 Darstellung der Quotienten als Mittelwerte aus ähnlichen Horizonten, berechnet auf den Kornanalysedaten [%] der Einzelprofile. F
ür den Ah-Horizont liegen nur 5 Werte vor!

A) Laboranalytische Charakterisierung - Westliche Karwendelgrube

A1. Organische Substanz, pH-Werte und Karbonatgehalt

Die quarz- und glimmerreichen Fremdstäube bedingen saures Milieu. Sehr sauer sind die gut entwickelten B-Horizonte vom Subtyp 3 (pH: 3,9 bis 4,3). Ein Anstieg der pH-Werte in den mittel sauren Bereich tritt mit zunehmender Solumtiefe auf. Die Gehalte an organischer Substanz unterscheiden sie deutlich von den organogenen Rendzinen. Die Ah-Horizonte sind mit 7% bis 10% stark humos, während die B-Horizonte Gehalte zwischen 2% und 6% aufweisen. Die Abnahme der organischen Substanz mit der Profiltiefe zum C-Horizont ist regelhaft.

A2. Korngrößenverteilung

Die Aeh- bzw. (Ah-Bv)-Horizonte sind auffällig sandreich (40% bis 72%), wobei sich die einzelnen Subfraktionen abgesehen von der Mullrendzina (Feinsanddominanz!) ungefähr gleichmäßig verteilen. Mit zunehmender Profiltiefe steigt in den Bvt-Horizonten auch wieder der mittlere Tongehalt von 10% auf 20% (Tab. 72).

Interpretation:

Die Sanddominanz steht im Gegensatz zu den Kornspektren der Flugstäube. Eine Erklärung ist die starke solifluidale Überprägung der Deckschichten, wodurch gröbere Kornfraktionen aus dem Gesteinsabrieb der Schutthalden in die Böden gelangen. In den B-Horizonten sinken die Sandgehalte (30% und 42%) wieder und liegen in den tonreicheren Horizonten unter 30%. Die Schluffgehalte der B-Horizonte haben geringe Schwankungsbreiten (41% bis 54%) und beweisen dadurch homogenes Substrat.

B1. Kornparameter

Die Oberböden (Ah, Bv gekappt) repräsentleren Schlufflehme und Schluffsande, sonst dominieren typische

Abb. 9: Vergleichende Kornsummenkurven von Böden und Staub, Westliche Karwendelgrube.

Lehme und Tonschluffe. Am Übergang zum Muschelkalk treten Schlufftone auf.

Dieser Wechsel belegt die Schichtung "äolische Deckschicht über Muschelkalk". Hohe U/T-Quotienten (U/T: 3,4 bis 7,2) unterstreichen den äolischen Charakter des Decksubstrats (Tab. 73).

B2. Vergleichende Kornsummenkurven

Die unterschiedliche Herkunft der Sola von Lössbraunerde und autochthonem Mineralboden wird im Vergleich mit den Kornsummenkurven der Flugstäube und Gesteinsresiduen deutlich (Abb. 9).

4.4.4 Allochthone Böden - Reiteralpe

Die allochthonen Braunerden werden in vier Subtypen unterschieden. Die **Subtypen 1** und **2** besetzen verschiedene Stellen im Relief, treten aber mit größerer Häufigkeit in Dolinen sowie im Bereich von wasserstauenden Substraten auf. Stau- oder Haftnässe bedingen unterschiedliche Grade der Pseudovergleyung (Profile der Catena 2 bis 4, Tab. 12, Kap. 2.3). **Subtyp 3** bezeichnet Lössbraunerden, die aus Hangkolluvien entstanden sind (vgl. Tab. 12, Catena 1).

Subtyp 4 tritt nur punktuell in Dolinen zwischen Wachterlsteig und Saugasse auf, wo Reste von Verwitterungsprodukten der ehemaligen Decken (Jura, Kreide) mit kristallinreichen Lokalmoränenresten vermengt sind. Sind diese Substrate schluffreich, dann tritt sogar Lessivierung mit dem Sonderfall der Parabraunerde (RA_P18 /GD 1) auf. Insgesamt sind leichte bis mittlere Grade der Podsolierung und Pseudovergleyung auffällig, die zu Übergangstypen aus der Klasse der Podsole führen (Tab. 74).

A) Laboranalytische Charakterisierung - Reiteralpe A1. Organische Substanz, pH-Werte und

Karbonatgehalt

Die <u>Ah-Horizonte</u> sind wurzelverfilzt und feinerde- sowie karbonatarm. Die organische Substanz beträgt dort zwischen 13% und 18%. Die beginnende Bleichung drückt sich in der Farbe (5 YR 4/1; 7,5 YR 5/1) aus. Das C/N-Verhältnis der Ah-Horizonte vom Subtyp 3 beträgt zwischen 20 und 24. Damit ist die biologische Aktivität dort im Moder (L/Of/Ah) nur mäßig. Of- und Oh-Material liegen als dünne Lagen über dem Ah-Horizont bzw. sind mit diesem vermischt.

Die sandigen <u>Aeh-Horizonte</u> der podsoligen und pseudovergleyten Braunerden (Subtyp 2, z.T. Subtyp 4) sind stark humos (org. Substanz: 6% bis 9%). Die biologische Aktivität ist trotzdem gut (C/N 11 bis 13). Die Horizonte zeigen saures Milieu (pH; 4 bis 5) an. Bei den podsoligen Typen (Subtyp 2) sind die A-Horizonte sehr stark sauer (pH; 3,6 bis 3,8).

Die braunen <u>B-Horizonte</u> (10 YR 6/3; 10 YR 7/6; 10 YR 6/6; 10 YR 6/4) sind schwach (RA_P17) bis mittel humos (RA_P15). In den B-Horizonten zeigt sich Sickerwasserzug in Form von Schlieren, Bändern oder Panther-

	SUBTYP 1	SUBTYP 2	SUBTYP 3	SUBTYP 4
Charakterisierung	Äolische Braunerde über Residualton aus Dachsteinkalk	Äolische Braunerde über anstehendem Dachsteinkalk mit Resi- dualtontapeten	Äolische Braunerde aus Kolluvium über Dach- steinkalk	Äolische Braunerde aus kristallinreichem Ge- schlebelehm in Doline über Dachsteinkalk
Referenzprofil	RA_P4	RA_P6	RA_P14; RA_P15	RA_P18/GD1
Horizontierung	Ah / Bv1 / Bv-II T / TmCv	Ahe / Bsv / Sd-Bv-II T / mCv	Ah / (Ahe) / Bvh / /II mCv	Ah / Bsv / Sw / II Sd / II Bv / ICv
Ansprache, vor- liegende Arbeit	Lößbraunerde über Residualton aus Dach- steinkalk	Podsolige Lößbrauner- de Podsol-Braunerde Podsol	Lößbraunerde aus äolischem Kolluvium über Dachsteinkalk	Pseudogley-Braunerde aus kristallinreichem Geschiebelehm über Dachsteinkalk
Einordnung (AG Boden 1996)	Braunerde-Rendzina Braunerde-Terra fusca	Podsolige Braunerde Podsol-Braunerde Podsol	Braunerde	Pseudogley-Braunerde
Einordnung WRB (1998)	Cambisol	Ferralic Cambisol; Podzole	Cambisol (with spodic and stagnic features)	Gleyi-stagnic Cambisol
Einordnung FAO (1990)	Cambisol over chromic Cambisol	Spodi-dystric Cambisol	Cambisol	Stagno-gleyic Cambisol

Tab. 74: Einordnung der allochthonen Böden auf der Reiteralpe.

fleckung. Häufig ist eine leichte Roststichigkeit in den Aggregaten.

Der Grad der Hydromorphie-Merkmale hängt von der Ausprägung der Pseudovergleyung ab. Im Profil RA_P17 bedecken die Merkmale eine Fläche von mehr als 80%. Der Sw-Horizont zeigt orange bis rötliche Rostflecken und orangefarbene stecknadelkopfgroße Konkretionen. Er ist fahlbraun aufgehellt (10 YR 7/6; 10 YR 8/6). Die pH-Werte liegen zwischen 4,1 und 4,8. Der Sd-Horizont ist marmoriert und hell. Die Rost- und Bleichsektionen bedecken 50% (DUFFY 2003). Der Basenreichtum zeigt sich in einem Anstieg der Karbonatgehalte (4% und 13%). Das C/N-Verhältnis (5 bis 18) markiert gute bis mäßige Streuzersetzung und Stickstoffmineralisierung (Tab. 75).

A2. Eisenoxide, effektive

Kationenaustauschkapazität

Aufgrund der ausgeprägten Braunerde-Podsol-Dynamik wird die Eisenoxidverteilung in den B-Horizonte vorgestellt. Stark humose Horizonte sind nicht analysiert, da hohe Gehalte an organischer Substanz das Bestimmungsverfahren verfälschen (SCHWERTMANN 1966).

Die hohen Fe_a/Fe_d Quotienten (> 3) unterstreichen typischerweise die Podsolierung in den Horizonten RA_4/1 und RA_6/2. Im Vergleich dazu weisen die residualen T-Horizonte geringe Werte auf (Tab. 76).

Interpretation:

Das Verhältnis Fe_o /Fe_d bzw. der "Aktivitätsgrad" (SCHWERTMANN 1959, S. 172) spiegelt die Umwandlung von amorphen Ferrihydriten zu kristallinen Formen (z.B. Goethit, Hämatit) wider. Es kann als ein Maß für den Verwitterungsgrad verwendet werden (MAHANEY et al. 1999). Höhere Gehalte an Ferrihydriten werden im reduzierenden Milieu der Stauhorizonte oder aufgrund von organisch-komplex gebundenem Fe (z.B. RA_14/2; RA_ 17/3) bewirkt. Damit kommt eine Alterung, die sich in ansteigenden Feg-Gehalten (z.B RA_7/2) zeigt, in den Quotienten für die Lösslehmdecken nur in manchen Horizonten zum Ausdruck (z.B. RA_15/3). Als Alternative sind für einige Horizonte die Fe2O3-Gehalte (6% bis 11%; Methode: RFA) aufgeführt, deren Höhe das Ausmaß der Tonmineralneubildung aus Glimmern verdeutlicht. Zusätzlich kennzeichnet die effektive Kationenaustauschkapazität das Aziditätsmilieu der Braunerdebzw. Podsol-Dynamik (Scheffer et al. 1989; Schlichting 1963; VÖLKEL 1995). Die saure Reaktion der podsolierten B-Horizonte führt zur Abnahme der basisch wirkenden Kationen an den Austauschern, während mit Annäherung an die II C-Horizonte besonders Calzium die Austauscherplätze besetzt (z.B. Bt-(T); RA_15/3 Bv+IICv). Dies trifft auch für die Terra fusca zu, deren hohe Basensättigung (BS > 80%) den guten ökologischen Zustand zeigt. Im effektiven Wurzelraum der Braunerden sind die Nährstoffbedingungen deutlich ungünstiger. Hier hat Al einen Anteil von 50% und 80% an KAK was die Podsolierung belegt.

Die Basensättigung in den B-Horizonten ist auf Werte zwischen 18% und 26% gesunken. Im Ah-Horizont unter mullartigem Moder (Profil 6) zeigt der hohe Al-Belag die Fixierung von Al in Chelaten an, mit deren Hilfe die Verlagerung in den Bv-Sw-Horizont gefördert wird.

A3. Korngrößenverteilung

Sehr hohe Schluffgehalte im Oberboden (62% bis 78%) und in den B-Horizonten (64% bis 82%) sind typisch. Grob- und Mittelschluff nehmen die Hälfte der Gesamt-Fraktion ein. Die Tongehalte bewegen sich je nach Horizonttyp zwischen 9% und 17%. Ebenso typisch ist der Feinsand in den Ah-Horizonten (10% bis 42%), der die Podsolierung fördert. Dadurch tritt der Grobschluff als rezent-äolischer Zeiger hinter den Feinsand. Grobsand findet sich nur über sandig verwitternden DachsteinkalTab. 75: Laboranalytische Kennwerte von allochthonen Böden, Reiteralpe.

Bodenprofil	Horizont	pH-Wert (1nKCI)	Org. Substanz (Corg x 1,72) [%]	CaCO ₃ [%]	C / N Verhältnis
Subtyp 1: Lößbraunerde-Rendzina					
RA_4/1	Bt	5,2	5,1	3,1	11,4
RA_4/2	Bt(T)	6	5,5	3,4	11
Subtyp 2: Podsolige Lößbraunerde	1				
RA_6/1	Ahe	3,8	9	1,3	11,3
RA_6/2	Bv-(Sw)	4	5,2	1,3	15
RA_6/3	Bv-(Sd)	4,6	3,5	3,6	18,2
Subtyp 3: Pseudogley-Lößbraunerde					
RA_17/1	Ah	4,4	6,5	0	13,2
RA_17/2	Bsv	5,5	1,5	0,79	16
RA_17/3	Sw	4,8	1,2	0,52	17,9
RA_17/4	II Sd	6,1	1,5	12,6	7,9
RA_17/5	II Bv	7,2	0,6	59,7	5,4
Subtyp 4: Lößbraunerde auf Kolluvium					
RA_14/1	Ah	5,1	13,4	7,8	25,1
RA_14/2	Bvt	4,8	11,4	6,6	22,1
RA_15/1	Ahe	4,9	18,2	3,2	23,4
RA_15/2	Bv	5,1	2,1	2,3	18,6
RA 15/3	ByllCy	5.8	4.6	4.3	16.9

Tab. 76: Eisenoxidverteilung in ausgewählten Horizonten, Reiteralpe.

Bodenprofil		Pedogene Eisenoxide, dithionithlöslich Fed [%]	Amorphes, freies Eisenoxid, oxalatlöslich Fe ₀ [%]	Fea / Fed	Fe ₂ O ₃ RFA [%]
Braunerde-Rendzina	-		1 . I		
RA_4/1	Bt	1,5	4,7	3,1	7,2
RA_4/2	Bt(T)	2,1	3,9	1,9	6,2
Podsolige Lößbraunerde					
RA_6/1	Ahe	0,9	2,8	3,1	n.b.
RA_6/2	Bv-(Sw)	1,2	5,5	4,5	n.b.
RA_6/3	Bv-(Sd)	1,6	2,1	1,2	n.b.
Pseudogley-Lößbraunerde					
RA_17/3	Sw	1,9	5,7	3,0	9,1
RA_17/4	II Sd	1,8	4,6	2,6	7,0
Lößbraunerde auf Kolluvium	1.000				
RA_14/2	Bvt	0,8	3,8	0,8	10,6
RA_15/1	Ahe	0,9	2,8	3,2	n.b.
RA_15/2	Bv	0,8	1,2	1,5	n.b.
RA_15/3	BvIICv	0,8	0,9	1,1	n.b.
Mittelgründige Terra fusca					
RA_7/2	TCv	0,3	0,1	0,3	10,1

ken (z.B. RA_17/5; RA_15/3; Einzelwerte Kap. 10.3). Es dominieren Sand- und Lehmschluffe und in Richtung II C-Horizonte, je nach Zusammensetzung der Lösungsresiduen, Tonschluffe und Schlufftone sowie Schluffsande. Diese Verteilung zeigt die Verwitterung des schluffreichen Flugstaubs zu lösslehmartigen Substraten. Sie sind sehr gut mit den Deckschichtenresten auf dem Zugspitzplatt vergleichbar, während in der Karwendelgrube der Sandlöss typisch ist.

B) Pedologische Indikatoren für äolische Substratherkunft

B1. Kornparameter

Die U/T-Quotienten bestätigen die genetischen Substratunterschiede. Ebenso ist der Sand in Form des Quotienten (gU+fS)/T ein äolischer Kennwert (Abb. 10). Als Resultat der Verwitterung tritt Mittelschluff in den residualen Horizonten (Bodengruppe I) hervor. Hier ist die Summe aus Feinschluff und Ton um

Abb. 10: U/T-Quotienten in Böden unterschiedlicher Substratherkunft, Reiteralpe.

den Faktor 1,5 höher als in den äolischen Substraten. Hingegen prägen Grobschluff und Feinsand die B-Horizonte der Gruppe II (Tab. 77).

B2. Vergleich von Kornsummenkurven

Die genetische Verwandtschaft von T-Horizonten /Gesteinsresiduen (Dachsteinkalk, Gosaukalk) und B-Horizonten /Flugstaub drücken die jeweils ähnlichen Verläufe der Summenkurven aus (Abb. 11).

4.4.5 Mineralogische Indikatoren für äolische Substratherkunft

A) Zugspitzplatt

A1. Silikatische Leichtminerale (Methode: RDA) -Zugspitzplatt

In den Braunerden dominiert Quarz unabhängig von der Solumtiefe. Dies unterstreicht die Homogenität des Lösskomplexes. Am zweithäufigsten treten Feldspäte (Albite), Glimmer und Illitvertreter auf (Tab. 78).

Interpretation:

Das Mineralspektrum ist typisch für äolische Substrate (z.B. BÄUMLER et al. 2002; DAHMS 1992, 1993; DILL und

ZECH 1980; KALLENBACH 1966; MIZOTA et al. 1980; REN-DELL 1989). Auffällig ist Chlorit als Mineral der Grünschieferfazies (z.B. Chloritschiefer). Einen weiteren Hinweis auf Einwehung aus dieser Fazies gibt Amphibol (meist als grüne bis schwarze Hornblende) als Hauptvertreter der Amphibol-Gruppe in Magmatiten.

Die Lössbraunerde ZP_P17 weist Illite und illitreiches mixed-layer Material (> 56 Rel.%) auf, wobei die Abnahme mit der Solumtiefe typisch ist für Böden aus Lössmaterial (RUHE 1984). Ebenso tritt Kaolinit auf, der aus der Feldspatverwitterung stammt oder aus primären Chloriten über sekundäre Chlorite entstehen kann (VAN HOUTEN1953; BIRKLAND 1974). Endglieder dieser Verwitterungsreihe sind die identifizierten Spuren von Hämatit und Gibbsit (Tab. 79).

Interpretation:

Die geringen <u>Chloritg</u>ehalte (16% bis 18 Rel.-%) der Lössbraunerde werden mit der Verwitterungsanfälligkeit von Fe reichen primären Chloriten erklärt. Sie werden bei sauren pH-Werten (pH < 5) durch das Herauswittern von Fe zerstört. Durch die Einlagerung von Al- und Fe-OH-Verbindungen in die Zwischenschichträume aufweitbarer Dreischichttonminerale können Al-Chlorite und Wechsellagerungsminerale entstehen (DILL und

Tab. 77: Mittlere Kornparameter der Schluff- und Sandfraktion von braunen Mineralböden, Reiteralpe.

Bodengruppen	U/T	mU/gU	fU/gU	(gU+fS)/T	fU+T [%]	(fU+T)/gU
Bv-T-, T-Horizonte Gruppe I	2,6	1,6	1,5	18	44	20
B-Horizonte Gruppe II	6,2	0,6	1,2	25	29	16

Tab.	78: Relative	Mineralhäufigkeit in alloo	hthonen Bodenhorizonten	, Zugspitzplatt (Methode: RDA),
------	--------------	----------------------------	-------------------------	---------------------------------

Probe	Quarz 1)	Kalifeldspat	Albit	Calzit	Dolomit	Glimmer /Illit ²⁾	Chlorit	Spuren 3)
ZP_P 17/1 Ah (0-3cm)	+++	0	++	+	+++	++	++	Gibbsit, Amphibole, Hämatit?
ZP_P 17/2 Bv1(3-25cm)	+++	+	++	0	+	++	++	Amphibole, TM, Gibb- sit
ZP_P 17/3 Bv2 (25-35cm)	+++	+	+	+	0	++	+	Dolomit
ZP_P 17/4 II(Bv-)T (35-38cm)	+++	+	+	++	+	+	+	TM
ZP_P 18/1 Ah-Bvt (0-8 cm)	*++	+	++	0	0	+	+	TM
ZP_P 18/2 II(Bv-)T (8-20cm)	+++	0	++	+	0	+	+	Kaolinit, Amphibole, TM, Hämatit
1) Semiquantitativ dominant; ++ =	ve Bestimm viel; + = w	hung aus dem enig (Durchfüh	Verhä rung: U	Itnis der . RAST, (Peak-Höher GLA, Münch	n an texturlo en; K. KNAB	sen Feint E, Uni Kar	oodenpräparaten: +++ = lsruhe)

2) Differenzierung zwischen Illit und Glimmer nicht möglich

TM = Tonmineral (Aufweitung > 10 Å)

Tab. 79: Relative Tonmineralgehalte in ausgewählten Bodenhorizonten, Zugspitzplatt (Methode: RDA, Texturpräparat).

Probe	Relative Ton <0,002mm [F	imineralge Rel%]	halte in de	er Fraktion	Kommentar				
	MLillit ¹⁾	111it 2)	Kt 3)	Ct 3)	Menge	Kristallisation	Quellfähigkeit		
ZP_P 17/1 Ah (0-3cm)	39	17	25	18	klein	gut	kaum		
ZP_P 17/2 Bv1(3-25cm)	60	7	16,5	16,5	klein	gut	kaum		
ZP_P 17/3 Bv2 (25-35cm)	57	8	18	17	keine Angabe	keine Angabe	keine Angabe		
ZP_P 17/4 II(Bv-)T (35-38cm)	9	43	15	33	klein	gut	kaum		

1) MLillit = unregelmäßige illitreiche Wechsellagerungsminerale

2) Illite (10 Å-Mineral, teilweise randlich aufweitbar), Index zeigt randliche Aufweitung der Schichten an

3) Kaolinit (7 Å-Mineral); Chlorit (7 Å-Mineral)

ZECH 1980). Günstig dafür ist saures Milieu bei pH 4-5 (TRIBUTH 1990; TRIBUTH und LAGALY 1991). Dies betrifft besonders die Horizonte Ah+Btv ZP_P18/1 (pH 4,5) und Bv1 ZP_P17/2 (pH 4,9).

Der Chloritanstieg in den residualen Horizonten zeigt einen geringeren Verwitterungsgrad an. Er wird aufgrund des verstärkten Auftretens von Calzit (z.T. Dolomit) mit der Erhöhung des pH-Wertes erklärt.

In den II(Bv-)T-Horizonten tritt mehr <u>Calzit</u> auf, z.T. findet man auch wenig <u>Dolomit</u>. Dies hängt mit der Geochemie des Wettersteinkalks zusammen (2% MgCO₃). In den Ah-Horizonten ist rezente Einwehung aus den Karbonatserien (z.B. Hauptdolomit, Rauwacken der Raibler Schichten) der Umgebung wahrscheinlich. Diese Ergebnisse zu den residualen Horizonten sind jenen von untersuchten Terrae fuscae aus Wettersteinkalk in anderen Gebieten vergleichbar (KUBIENA 1945; SOLAR 1964). Die genetische Schichtung "Lösslehmkomplex über Residualton" wird anhand der Tiefengradienten von Calzit und Illit untermauert.

A2. Haupt- und Spurenelemente (Methode: RFA) -Zugspitzplatt

Die SiO₂-Gehalte (Gew.-%) betragen in den B-Horizonten zwischen 43% und 53%, in den Ah-Horizonten 15% bis 22%. In den residualen Horizonten (II(Bv-)T) und im Ah-Horizont von ZP_P17 sinkt der Quarzgehalt auf einen Mittelwert von 43%.

Die geochemischen Parameter zeigen eine typische Tiefenfunktion der Hauptelemente <u>CaO und MgO</u> in den T-Horizonten. Das Maximum der basischen Oxide tritt im ICv-Horizont der Lokalmoräne auf (CaO+MgO: 55,8%). Kalium liegt vorwiegend in Glimmern und Illiten sowie Kalifeldspäten vor. Das Verhältnis von K₂O/CaO beträgt in den B-Horizonten mehr als 1,5 und zeigt die leichte Verwitterbarkeit von Ca im Vergleich zu K. Sonst sind die Kaliumgehalte in den braunen Mineralhorizonten ähnlich (Tab. 80).

Interpretation:

Die hohen Gehalte an Al₂O₃ beweisen mit den Gibbsitbefunden (RDA) die Verwitterung Al-haltiger Sillkate. Die Verteilung von Quarz und Aluminium wird durch die

mittlere Verhältniszahl von SiO₂/Al₂O₂ ausgedrückt. Diese beträgt in den B-Horizonten 2,9 und im residualen Horizont nur noch 2.1. Diese Tiefenfunktion tritt dem üblichen Verwitterungsgradienten entgegen und kennzeichnet das äolische Substrat der Lössbraunerden. Eine Erklärung für die geringen Kaliumgehalte (1,62%) im Ah-Horizont liefern die Ergebnisse aus der RDA an der Tonfraktion (< 2 µm). Es treten wenig guellfähige, illitreiche Wechsellagerungsminerale sowie Illite (10 Å-Minerale) ohne randliche Aufweitung auf, die Kalium in den Zwischenschichträumen fixieren. Die relativen Gehalte betragen zwischen 52% und 67%. Die vergleichbaren Natriumwerte der B-Horizonte werden mit dem Vorhandensein von Albit erklärt. Albit hat nach Quarz die zweite Häufigkeit, entsprechend gering ist er im Residualmaterial vertreten. Titan entstammt entweder leicht verwitterbaren Biotiten und Amphibolen oder verwitterungsstabilen Mineralen wie Illmenit, Titanit oder Rutil. Rutil tritt regelmäßig im Schwermineralspektrum der untersuchten Böden auf, während Titanit sporadisch identifiziert ist. Der anorganische Phosphor in Böden stammt meist aus der Verwitterung des Calziumphosphats Apatit, dessen Löslichkeit bei Anwesenheit von Calzium-Ionen sinkt. Dies kann den Anstieg auf 0,33% P2Os im Unterboden des T-Horizonts erklären.

A3. Spurenelemente (Methode: RFA) - Zugspitzplatt

In jüngster Zeit werden auch die Spurenelemente als Lösszeiger herangezogen, ohne jedoch eindeutige Elemente dafür festzulegen. Dies hängt mit den Schwankungen in der Verteilung zusammen, die individuell von der Geochemie und dem Mineralbestand des Ausgangsmaterials abhängen (z.B. CHESTER und JOHNSON 1971a,b; PÉCSI und RICHTER 1996; VÖLKEL1995).

In der vorliegenden Arbeit können lithologische Schichtwechsel mit Hilfe ausgewählter Spurenelemente nachvollzogen werden. Im Lösslehm sind die Elemente <u>Ba</u>, <u>Zr, Zn, Sr, V und Rb</u> im Vergleich zum Lösungsresiduum des Wettersteinkalks angereichert. Von den genannten Elementen sind gesteinsbürtig folgende Gehalte festgestellt: Sr (55 ppm), V (13 ppm) und Zn (28 ppm). Die verbleibenden Spurenelemente sind nur mit Spannen von < 5 bis < 50 ppm anzugeben. <u>Vanadium</u> ist chemisch

Horizont		Oxide [Get	(RFA) w%]		Geo	chemisc Indices	he	Oxide (RFA) [Gew%]			
	MgO	CaO	Na ₂ O	K20	CaO + MgO [%]	K ₂ O / CaO	K2O / Na2O	MnO	TIO ₂	P2O5	
ZP_P17/1 Ah	1,34	1,54	0,68	1,62	2,88	1,05	2,38	0,16	1,00	0,24	
ZP_P17/2 Bv1	1,41	1,19	0,82	1,93	2,60	1,61	2,35	0,23	1,17	0,17	
ZP_P17/3 Bv2	2,41	1,43	0,94	2,11	3,84	1,47	2,24	0,10	0,97	0,24	
ZP_17/4 II(Bv-)T	2,28	1,87	0,65	1,99	4,15	1,06	3,06	0,09	0,87	0,33	
ICv (wK), LR 1)	2,00	53,84	<0,20	<0,05	55,84	-		<0,01	<0,05	<0,02	
1) LR = Lösungsr	esiduu	m aus V	Vetterst	einkalk							

Tab. 80: Ausgewählte geochemische Parameter am Beispiel des Profils ZP_P 17.

Tab. 81: Schwermineralbestand unterschiedlicher Horizonte, Zugspitzplatt.

				200	anna	pekt	rum (Kornza	ahl- %); Fra	aktion 0.1	mm bis 0.2	5mm		
Probe G	9	z	T	R	Ар	St	Di	And	Hbl	Ep+ Zo	Chlori- toid	Extrem Stabile (Z, T, R)	Instabile (G, Hbl, Ap)	Instabil / extrem Stabil	G / Ep+Zo
Aolische B-Horizonte 1) 4	5	3	3	1	4	5	2	0	16	22	1	7	65	9,1	2,0
II(Bv-)T- Horizonte ¹⁾ 2	8	12	4	3	3	4	0	0	17	31	0	19	47	2,5	0,9
Residuale T- 6 Horizonte P29 d	Gr len,	anat ans	e, 4 ons	Zir	kone	, 1 R e we	lutil, iterer	1 Stau 1 Schw	rolith, /ermir	3 Horr erale	nblen-	5	9	1,8	-

Andalusit; HbI = Hornblende; Ep+Zo = Epidot (+ Zoisit + Klinozoisit + feinkörnige Aggregate von Pumpellyit)

1) Darstellung als Mittelwerte (Basis: Einzelanalysen: je 4 pro B-Horizont; je 3 pro II(Bv-)T-Horizont).

Tab. 82: Relative Mineralhäufigkeit in allochthonen Böden, Westliche Karwendelgrube (Methode: RDA).

Probe	Qz 1)	Kf	Albit	Cc	Dol	Glimmer /Illit ²⁾	Chlorit	Reihung der Nebenkomponenten
Äolische Mullrendzina, KG_P11/1	+++	+	++	+	+	+	tr	Qz; Alb >> Kf; Cc,Dol
Lößbraunerde, flachgründig KG_P 1/2 (8-45cm)	+++	+	+	tr	0	+	0	Qz; Kf, Al>>Cc
Lößbraunerde, mittelgründig KG_P 4 /2, Bv (8-60cm)	+++	++	0	+	+	+	+	Qz; Kf>> Dol,Cc
Lößbraunerde, mittelgründig, KG_P3/1 Bv (0-70cm)	0	++	+++	+	+	*	+	Alb > Kf; Dol, Cc
 Semiquantitative Bestimm dominant; ++ = viel; + = w ren (Durchführung: U, RAS 	ung aus enig; Qz ST, GLA,	dem = Qu Münd	Verhä arz; KF chen; K	iltnis = Ka . KN/	der F lifelds ABE, I	Peak-Höhe pat; Alb = / Jni Karlsru	n an tex Albit; Cc he)	turlosen Feinbodenpräparaten: +++ = Calcit; Dol = Dolomit; tr = trace, Sp

Differenzierung zwischen Illit und Glimmer nicht immer möglich; Tonmineral (Aufweitung > 10 Å)

z.B. in Brauneisenerz (z.B Goethit) gebunden. <u>Barium</u> tritt im Baryt als typischer Vertreter von Sedimentiten oder z.T. als Bariumtitanat auf, eine weitere Quelle für Titan in den residualen Horizonten. Die residualen T-Horizonte hingegen zeigen einen Anstieg der <u>Lanthanoide</u> (<u>La, Ce, Nd, Y</u>), die als Seltenerdmetalle stets vergesellschaftet als Silikate bzw. Phosphate auftreten. Hervorzuheben ist <u>Zirkon</u> (377 ppm) im B-Horizont, während der autochthone Liegendhorizont um 40% weniger aufweist und der Wettersteinkalk (IICn) selbst zirkonfrei ist (< 10 ppm Zr).

Die relative Zr-Anreicherung ist aufgrund des Tiefengradients nur mit Substratwechsel erklärbar und belegt den Verwitterungsstatus des Lösslehmkomplexes. Auch innerhalb des Lösslehms zeichnet die regelhafte Veränderung der Spurenelementgehalte die Horizontierung nach. In der Korngrößenanalyse zeigt sich Schichtung in einer Abnahme des Schluffgehalts, die tendentiell mit dem Sinken der Zirkonmenge einhergeht.

A4. Schwermineralbestand - Zugspitzplatt

Der Schwermineralbestand (blass-gelb, gelb, kirschrot, meist Fraktion < 0,1 mm) der äolischen Horizonte ist glimmer- und chloritreich, zeigt einige Magnetitkörner und bezogen auf die Fraktion kaum angewitterten Granat. Die Menge ist mäßig. Es dominiert Granat, gefolgt von eisenreichen Gliedern der Epidotgruppe und Hornblende. Je nach Horizonttiefe und Verwitterungsauslese ist Hornblende (< 0.1 mm) in den B-Horizonten nicht selten (5% bis 31%), während die Ah-Horizonte hornblendereich (33% bis 36%) sind. Im residualen Unterbodenhorizont sind nur sporadisch Schwerminerale vorhanden (Tab. 81).

Interpretation:

Die <u>Granatdominanz</u> ist Ausdruck der Lithologie des Liefergesteins. Eine Erklärung für die Anreicherung ist sekundäre Verwitterung in kalkfreien Horizonten. Dabei reichert sich Granat in Abhängigkeit vom Bodenmilieu relativ zur Hornblende an, die wie Apatit im sauren Milieu ausgemerzt wird (BOENGK 1983; FRÜHAUF 1992). Horizontunterschiede im Lösslehmkomplex (z.B. Bv1, Bv2) zeigen sich manchmal in einer Zunahme des Quotienten bei gleichzeitiger Abnahme der Hornblende. Dies ist als Resultat sekundärer Verwitterung zu werten (WEYL 1960). Bemerkenswert ist die geringe Häufigkeit der extrem Stabilen, wobei Zirkon und Turmalin Granitindikatoren sind (FRÜHAUF 1992). Tab. 83: Relative Tonmineralgehalte in allochthonen Böden, Westliche Karwendelgrube (RDA, Texturpräparate).

Relative Tonmineralgehalte in der Fraktion <0,002mm [Rel%									
MLINI 1)	(t 2)	Kt 3)	Ct 3)						
11	55	0	34						
24 40	50	4	22						
42 ⁵⁰ MLiii/sm ¹⁾	38	0	20						
45 65	42 gu	0	13						
	Relative Tonmine MLimit ¹⁾ 11 24 40 42 50 MLiit/sm ¹⁾ 45 65	Relative Tonmineralgehalte in de MLimit 1) IIIIt 2) 11 55 24 40 50 42 50 38 MLiii/Sm ¹) 38	Relative Tonmineralgehalte in der Fraktion <0, ML _{IIII} ⁽¹⁾ IIIIt ⁽²⁾ Kt ⁽³⁾ 11 55 0 24 ⁴⁰ 50 4 42 ⁵⁰ 38 0 ML _{III} /Sm ¹) 38 0						

quellfähiger Schichten i.e. des Smektits in Rel.-% an;

2) ML_{lilit} = unregelmäßige illitreiche Wechsellagerungsminerale

 Illite (10 Å-Mineral, teilweise randlich aufweitbar), Index zeigt randliche Aufweitung der Schichten an; Kaolinit (7 Å-Mineral); Chlorit (7 Å-Mineral)

Tab. 84: Ausgewählte geochemische Parameter in allochthonen Böden, Westliche Karwendelgrube (Basis: Einzeldaten aus RFA).

	Oxide (RI	FA) [Gew	%]			Geochemische Indices			
Horizont	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO+ MgO	K20	TiO ₂	Al ₂ O ₃ / Fe ₂ O ₃	SiO ₂ / Al ₂ O ₃	
Mullrendzina, Ah KG_P11/1 (0-40cm)	85,4	4,7	3,3	1,4	0,74	0,29	1,4	18,2	
Lößbraunerde, Bv flachgründig KG_P 1/2 (8-45cm)	77,4	7,4	3,9	1,6	1,45	0,40	1,9	10,5	
Lößbraunerde, mittelgründig KG_P 4 /2, Bv (8-60cm)	81,5	6,8	2,4	1,7	1,14	0,29	2,8	12	
Lößbraunerde, mittelgründig, KG_P3/1 Bv (0-70cm)	74,4	8,2	4,5	1,8	1,35	0,4	1,8	9,1	

Die residualen II (Bv-)T-Horizonte sind opakreich. Kennzeichnend ist die Zunahme der extrem Stabilen, die mit stärkerer Verwitterung und/oder Anreicherung aufgrund von Sickerwasserbewegung erklärt wird. Granat, Hornblende und die Epidotgruppe treten auch in den II (Bv-)T-Horizonten auf. Der <u>Quotient Granat/Epidot</u> beträgt allerdings nur noch 0,9 im Gegensatz zum hangenden Lösskomplex (Wert 2).

Dies ist ein weiterer Hinweis auf lithologische Schichtung, da das Verhältnis Granat/Epidot im selben Substrat mit der Solumtiefe als Resultat sekundärer Verwitterung häufig zunimmt (WEYL 1952, FRÜHAUF 1992). Gleichzeitig sind Karbonatkörner und magnetische Minerale häufig. Dies deutet die Nähe zum Wettersteinkalk an, der im oberen Faziesbereich Erzanreicherung zeigt (JERZ und ULRICH 1966).

B) Karwendelgrube

B1. Silikatische Leichtminerale (Methode: RDA) – Westliche Karwendelgrube

Die äolischen Substrate zeigen Quarz, gefolgt von Feldspäten. Auffällig ist, dass Quarz in der Probe KG_P3/1 nur in Spuren auftritt. Wie in den Proben des Zugspitzplatts dominieren Plagioklase, die sich auf die Tonmineralbildung auswirken, indem Kaolinit spektakulär in drei von vier Proben fehlt.

Dieser Sachverhalt wird mit der Dominanz von Na und Ca in den Plagioklasen erklärt. Ebenso bemerkenswert sind Reste von Smektit (KG_P4/2). Mg-reiche Smektite (Montmorillonite) sind wie die Illite typisch in Böden aus Lössen (SCHEFFER et al. 1989). Smektite sind aber auch Ausdruck der Versauerung (KG_P4/2, pH 4,5). Sie wandeln sich in sekundäre Chlorite um (Tab. 82; Tab 83).

B2. Haupt- und Spurenelemente (Methode: RFA) – Westliche Karwendelgrube

Die Verteilung der Hauptelemente zeigt eine Vorherrschaft von SiO₂ in den sandig-schluffigen Braunerden bei geringen Gehalten an Al₂O₃. Die hohen Kieselsäuregehalte decken sich mit dem Auftreten von Schluffsanden bzw. Sandschluffen in den sauren oberflächennahen Horizonten. Die konstante Verteilung der Hauptelemente zeigt Substrathomogenität an (Tab. 84).

B3. Schwermineralbestand – Westliche Karwendelgrube

Die mäßige Schwermineralmenge ist braun bis schwarz oder ockergelb (z.B. KG_P4/2 Bv). Der Anteil der Karbonatkörner ist gering oder fehlt. Nur die Lößbraunerde am Luvhang (KG_P1/2, Bv) zeigt deutlich Karbonatkörner bei ausgesprochen hohem Opakgehalt (Tab. 85).

Interpretation:

In allen Proben dominiert die Kornfraktion < 0,1 mm, was auf verstärkte Lösungsverwitterung im sauren Milieu zurückgeht. Dies zeigt sich im angelösten Granat, der in allen Proben den gleichen Verwitterungszustand aufweist. Im Gegensatz dazu ist Hornblende frisch, im Ah-Horizont der Mullrendzina (KG_P11/1) sogar sehr frisch. Granat und Hornblende dominieren die Spektren Tab. 85: Gesamtspektren der Schwerminerale ausgewählter Bodenhorizonte, Westliche Karwendelgrube.

	Gesan	tspektr	um (Ko	ornzał	1-%);	Frak	ction (),1mm-	0,25m	m		
the state of the second	G	Z	T	R	Ap	St	Di	And	Hbl	Ep+Zo	Sonstige	Kornsumme
Mullrendzina, Ah, KG_P11/1	28	5	1	6	0	7	1	0	18	34	0	120
Lößbraunerde, flachgründig Ah, KG_P1/2	21	5	0	0	7	0	0	0	26	40	0	42 1)
Lößbraunerde, mittelgründig Bv, KG_P4/2	33	15	0	2	5	0	0	0	18	27	0	40 1)
Lößbraunerde, mittelgründig, Bv, KG_P3/1	40	10	2	6	<1	3	<1	0	8	32	0	304
G = Granat; Z = Zirkon (+ Xeno Andalusit; Hbl = Hornblende; E ¹⁾ Beachte schlechtere Statistik	ptim + M p+Zo = wegen	onazit). Epidot geringe	T = Tr (+ Zois er Korn	urmali it + K popul	in; R = linozoi ation!	Rutil; sit + f	Ap = einkö	Apatit rnige A	; St = ; ggreg	Staurolith ate von P	; Di = Disth Pumpellyit)	en, And =

Tab. 86: Relative Mineralhäufigkeit in Horizonten von allochthonen Böden, Reiteralpe (Methode: RDA).

Probe	Qz 1)	Kf	Albit	Cc	Dol	Glimmer /Illit ²⁾	Chlorit	Reihung der Nebenkomponen- ten
Braunerde-Rendzina, RA_P4/1 AhBv (2–25cm)	++	+	+	0	0	+	+	Qz>Kf,Al
Lößbraunerde aus äolischem Kolluvium, RA_P14/2 Ah+Bv (0- 14cm)	+++	+	++	+	+	+	tr	Qz; Alb >> Kf; Cc,Dol
Lößbraunerde RA_P17: RA_P17/1 Ah	+++	+	++	0	0	+	+	Qz; Al>> Kf
RA_P17/2 Bsv	+++	+	+	+	0	+	+	Qz; Al>Kf >> Cc
RA_P17/3 Sw	+++	+	++	+	0	+	+	Qz; Al>>Kf >>Cc
RA_P17/4 Sd	+++	+	++	÷	0	+	+	Qz; Al >> Kf >> Cc
RA P17/5 II By+TCy	+	+	+	+++	0	0	0	Cc>>Kf,Al, Qz

ren (Durchführung: U. RAST, GLA, München; K. KNABE, Uni Karlsruhe)

2) Differenzierung zwischen Illit und Glimmer nicht immer möglich; Tonmineral (Aufweitung > 10 Å)

Tab. 87: Relative Tonmineralgehalte in Horizonten von allochthonen Böden, Reiteralpe (RDA, Texturpräparat).

Prohammeterial	Relative Tonmineralgehalte in der Fraktion <0,002mm [Re								
Probenmaterial	MLillit 1)	Illit 2)	Kt 3)	Ct 3)					
Braunerde-Rendzina, RA_P4/1 AhBv (2-25cm)	44	12	28	16					
Lößbraunerde aus äolischem Kolluvium, RA_P14/2 Ah+Bv (0-14cm)	9	46	0	45					
Lößbraunerde RA_P17: RA_P17/1 Ah	0	55	8	37					
RA_P17/2 Bsv	0	50	14	36					
RA_P17/3 Sw	0	48	15	37					
RA_P17/4 Sd	0	59	5	36					
RA_P17/5 II Bv+TCv	0	59	14	30					

ML_{illit} = unregelmäßige illitreiche Wechsellagerungsminerale

 Illite (10 Å-Mineral, teilweise randlich aufweitbar), Index zeigt randliche Aufweitung der Schichten an, Kaolinit (7 Å-Mineral); Chlorit (7 Å-Mineral) (43 Rel.-% bis 56 Rel.-%). Zusammen mit Apatit (5 Rel.-% bis 7 Rel.-%) bilden sie die Instabilen (ZECH und NEUWINGER 1974; ZECH und VÖLKL 1979). Das Verhältnis Stabile / Instabile (mit Staurolith und Disthen) ist in den Horizonten konstant (0,8 bis 1,2) und zeigt Substrathomogenität. Die zweite Häufigkeit nimmt die Epidot-Zoisit-Gruppe ein. Die Summe aus Rutil, Turmalin und Zirkon beträgt 12 Rel.-% bis 17 Rel.-% in den Braunerden im Lee und sinkt in der Braunerde im Luv (Probe KG_P1/2, Bv) auf 5 Rel.-%. Hier zeigen der höhere Karbonatkorngehalt und die wenigen Stabilen einen geringeren Verwitterungsgrad an.

C) Reiteralpe

C1. Silikatische Leichtminerale (Methode: RDA) -Reiteralpe

Neben Quarz nimmt Albit die zweite Häufigkeit bei den Feldspäten ein. Auffällig ist der Tiefengradient von Calzit (RA_P17) mit weitgehender Entkalkung der Oberböden. Glimmer in Form von Muskovit zeigt ebenfalls eine typische Tiefenfunktion des Verwitterungsgrades. In den Ah-Horizonten erscheint er sehr frisch bis frisch. Ab ca. 9 cm bis 12 cm zeigen deutliche Lösungsspuren bereits Verwitterung an. In diesen Horizonten tritt als Zeichen des sekundären Glimmerabbaus mixed-layer Material auf, das in der Pseudogley-Braunerde aus kristallinreicher Deckschicht (RA_P17) völlig fehlt. Ebenso bemerkenswert ist Chlorit (30% bis 45 Rel.-%), der die Umwandlung von Illit in Bodenchlorit anzeigt. Die einheitliche Zusammensetzung der Tonminerale in Profil RA_P17 (17/1 bis 17/3) beweist Substrathomogenität (Tab. 86, 87).

C2. Haupt- und Spurenelemente (Methode: RFA) -Reiteralpe

Die Verteilung zeigt relativ konstante SiO₂-Gehalte (59% bis 62%) bei hohen Al₂O₃-Werten und bestätigt die Verwitterung Al-haltiger Minerale. Das Verhältnis SiO₂ / Al₂O₃ bleibt ebenso wie Titanoxid mit der Tiefe konstant und unterstreicht den einheitlichen Verwitterungsstatus. Die genetische Schichtung "äolische Deckschicht über Residualmaterial" (P17/5 II Bv+TCv) zeigt sich auch in der Halbierung des Kieselsäure- und Eisengehalts sowie in Vervielfachung der Karbonate (Tab. 88).

C3. Schwermineralspektrum - Reiteralpe

Hornblende und die Epidot-Zoisit-Gruppe (45% bis 77 Rel.-%) dominieren alle äolischen Horizonte, während Granat im sauren Milieu schnell ausgemerzt wird. Die Braunerde RA_P4 zeigt eine geringe Schwermineralmenge (Fraktion < 0,1 mm) mit relativ hohen Anteilen an Stabilen mit Staurolith sowie drei Rutil-Kniezwillinge. Im Profil RA_P17 treten wieder Chloritoide auf. Spektakulär ist Granat (55 Rel.-%) im residualen II

	Oxide (RFA) [Gew%]						Geochemische Indices	
Horizont	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO+ MgO	K20	TiO ₂	Al ₂ O ₃ / Fe ₂ O ₃	SiO ₂ /Al ₂ O ₃
Braunerde-Rendzina, RA_P4/1 AhBv (2–25cm)	57,53	17,31	7,22	1,93	2,00	1,15	2,4	3,3
Lößbraunerde aus Kolluvium, RA_P14/2 Ah+Bv (0-14cm)	52,97	15,09	10,64	1,91	1,80	1,09	1,4	3,5
Lößbraunerde RA_P17: RA_P17/1 Ah	62,12	15,21	5,59	3,0	3,10	0,96	2,7	4,1
RA_P17/2 Bsv	60,0	14,91	9,0	3,1	3,02	1,09	1,7	4,0
RA_P17/3 Sw	61,21	15,98	7,0	3,1	3,03	1,03	2,3	3,8
RA_P17/4 Sd	59,13	16,98	6,89	4,12	2,99	1,02	2,5	3,5
RA_P17/5 II Bv+TCv	25,1	7,00	3,00	35,12	2,00	0,95	2,3	3,6
RA_P17/6 ICv	1,0	1,0	1,0	54,1	0	0	- 1	1

Tab. 89: Gesamtspektren der Schwerminerale ausgewählter allochthoner Horizonte, Reiteralpe.

Gesam	tspekt	rum (Ko	ornzah	11-%);	Frak	ction (),1mm	-0,25m	m		
G	Z	T	R	Ap	St	Di	And	Hbl	Ep+Zo	Sonstige	Kornsumme
9	10	4	7	3	3	1	0	9	52	2	100 1)
5	2	<1	1	0	1	0	0	14	77	0	300
	-										
1	1	1	0	1	1	0	0	49	45	1	310
3	1	1	0	0	0	0	0	33	62	0	300
4	3	1	1	0	2	0	0	26	61	1	300
55	1	1	2	3	4	1	0	3	20	0	300
	G 9 5 1 3 4 55	G Z 9 10 5 2 1 1 3 1 4 3 55 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	G Z T R Ap St Di And Hbl Ep+Zo Sonstige 9 10 4 7 3 3 1 0 9 52 2 5 2 <1

G = Granat; Z = Zirkon (+ Xenotim + Monazit), T = Turmalin; R = Rutil; Ap = Apatit; St = Staurolith; Di = Disthen, And = Andalusit; Hbl = Hornblende; Ep+Zo = Epidot (+ Zoisit + Klinozoisit + feinkörnige Aggregate von Pumpellyit) ¹⁾ Beachte schlechtere Statistik wegen geringer Kornpopulation! Bv+TCv des Geschiebemergels mit folgender Zusammensetzung: 54% CaO, 1% MgO, 1% Fe₂O₃, 1% Al₂O₃, 1% SiO₂ (DUFFY 2003) (Tab. 89).

Interpretation:

In Profil RA_4/1 ist Apatit rezent eingeweht und im mäßig saurem Bodenmilieu (pH: 5,2) überdurchschnittlich gut erhalten. Granat, Staurolith, Zirkon, Epidot, sowie die große Menge an Zoisit und frischer grüner Hornblende, beschreiben ein Liefergebiet mit "molasseartigem Spektrum" (schriftliche Mitteilung Dr. RAST 2003).

Mineralogisch ist der Geschiebernergel (RA_17/5 II Bv+TCv) mit den Grundmoränenresten im Bereich der Schwegel- und Eisbergalm verwandt. GILLITZER (1912, S. 186) beschreibt sie als ein Konglomerat aus Dachsteinkalk und jurassischen Hierlatz-Kalken (Lias) von roter Farbe. Der Granatgehalt hingegen geht auf kantengerundete bis gerundete Kristallinkomponenten zurück, die Verwitterungsreste der ehemaligen Augensteinbedeckung darstellen.

4.5 Zusammenfassung wichtiger Aspekte der Bodenbildung

4.5.1 Die autochthonen Böden

A) Organogene Typen

Sie sind die Hauptbodentypen im Wetterstein- und Karwendelgebirge (alpine und subnivale Stufe) sowie in der oberen subalpinen Stufe der Reiteralpe. Die reifen Entwicklungsstadien dieser Böden sind durch residuale Tonhorizonte über dem Ausgangsgestein gekennzeichnet. In allen humusreichen Oberböden (Of, Aih, Oh, Ah) ist kristalliner Flugstaub deponiert. Die pedochemische Tonbildung aus der Glimmer-, Feldspat- und Foidverwitterung bedingt die bemerkenswerten Gehalte an lehmiger Feinerde in den Humushorizonten. Die Feinerde der Oberböden weist hohe Gehalte an Schluff (Grobbzw. Mittelschluff) und Sand (Fein- und Feinstsand) auf. Die deponierten Flugstäube sind in ihren Primäreigenschaften (z.B. kristalline Spektren, Mittelschluff- und Feinstsanddominanz) am deutlichsten in den initialen Horizonten (Aih, Of) zu erkennen. Allerdings variiert der Mineralbestand mit dem pH-Wert der Humusauflagen. Entsprechend ist der Verwitterungsstatus der Minerale frisch bis stark angelöst. Vorwiegend residualer Herkunft hingegen sind die Verlehmungsprodukte in den Oh+T-Horizonten der reiferen Entwicklungsstadien. Kennzeichen sind höhere Tongehalte, die mit den Gesteinsresiduen korrespondieren. Dies belegen z.B. hohe Illitgehalte mit Kaolinit und die geringen Kornzahlen an extrem Stabilen (Zirkon, Rutil, Turmalin).

B) Braune Mineralbodentypen

Die autochthone Bodenbildung manifestiert sich in Residualmaterial, das je nach Ausgangsgestein, Substratform und Höhenstufe unterschiedliche Mächtigkeiten zeigt. Auf Felsstandorten hängen die Solummächtigkeiten deutlich von der geochemischen Zusammensetzung des Ausgangsgesteins ab. Sehr reine Kalksteine (Wettersteinkalk, Muschelkalk, Dachsteinkalk) bedingen geringmächtige T-Horizonte (Mittel: 2 cm bis 5 cm). Weit besser entwickelt (Mittel: 12 cm bis 25 cm) sind die Mineralböden aus unreinen Serien und Brekzien (z.B. Reichenhaller Schichten, Gosauserien, Dachsteinkalk-Brekzien). Zusätzlich fördern Lockersubstrat und Lokalmoräne deutlich die Verbraunung und Verlehmung (Ah+Bv-, Oh+T- und T-Horizonte). Die größten Solumtiefen (> 60 cm) werden in Kolluvien ermittelt (z.B. Dolinenfüllungen/Reiteralpe).

C) Unterschiede in der Bodenentwicklung

Für das Zugspitzplatt ist die reife Polsterrendzina (Oh/Oh+T/(T)Cv) vor allem auf Lokalmoräne typisch. In der Westlichen Karwendelgrube sind die T-Horizonte nur auf Standorten mit Muschelkalkschutt ausgeprägt, sonst endet die Entwicklung bei den Oh+T-Horizonten oder im Stadium der mullartigen Rendzina (Ah/C). Ganz anders in der Östlichen Karwendelgrube, wo auf Reichenhaller Brekzien tonreiche Terra fusca-Rendzinen kartiert sind. Auf der Reiteralpe ist das Spektrum der autochthonen Mineralböden substratbedingt besonders vielfältig. Die Verwitterung der tektonischen Brekzien geht mit auffälliger Rotfärbung der Residualhorizonte einher. Häufig sind Braunerde-Terrae fuscae, die auch aus der Verwitterung der gelbroten Knollen und Konkretionen der jurassischen "Schwimmenden Scherben" stammen. Die Tonhorizonte zeigen gelbe, rote und weiße Tonnester sowie plastisches Gefüge mit Schrumpfrissen. Autochthone Braunerden sind aus tonig-schluffigen (z.B. brekziierter Dachsteinkalk) sowie sandig-lehmigen Verwitterungsresiduen (Gosauquarzit, Gosaumergel) entstanden und häufig durch Podsolierung und Pseudovergleyung geprägt. Damit sind die autochthonen Mineralböden auf der Reiteralpe nicht nur anhand der Tongehalte zu kennzeichnen.

Besonderheiten sind die flach- bis mittelgründige Terra fusca (Ah/T/ICv) auf Hangschutt aus Dachsteinkalk-Brekzie sowie die Parabraunerde über relikitschem Kalkverwitterungslehm in Dolinen. Dolinenfüllungen aus Lokalmoräne + Geschiebelehm bedingen punktuell auch Pseudogley-Braunerden, pseudovergleyte Braunerden und Podsol-Braunerden.

D) Einordnung und Klassifizierung

Die Böden werden den Klassen der Ah/C-Böden und der Terrae calcis zugeordnet, die sich auf der Reiteralpe um die Klassen der Braunerden und Podsole erweitern. Die Profile lassen sich den Typen Rendzina, Terra fusca und Braunerde zuordnen. Art und Form des Ausgangssubstrats sowie die Entwicklungstiefe (flach- und mittelgründig) definieren die mineralischen Subtypen. Die Ausprägung und Mächtigkeit ihrer diagnostischen Horizonte drückt sich im Tongehalt aus:

-	Bv-T	Braunerde-Terra fusca	(Tongehalt mäßig)	
-	(Bv-)T	Terra fusca-Rendzina	(Tongehalt mittel	
			bis hoch)	
	TITO	Elevels, late weithel		

 T/TCv Flach- bis mittelgründige Terra fusca
 T/TCv Reife Polsterrendzina

(Tongehalt hoch) (Tongehalt maximal) Maxima zeigen die T-Horizonte (Ton: 45% bis 58%) der reifen Polsterrendzina (Zugspitzplatt), gefolgt von den flach- bis mittelgründigen Terrae fuscae (Ton: 35% bis 48%) auf der Reiteralpe. Vergleichbar sind die Residualbänder aus Muschelkalk, während jene aus Reichenhaller Brekzien nur Werte zwischen 29% und 34% aufweisen. Die hohe Plastizität der bunten T-Horizonte aus Dachsteinkalk (mittlerer Tongehalt: 45%) erinnert an die P-Horizonte der Pelosole (AG Boden 1996).

In der vorliegenden Arbeit werden die braunen Horizonte (Tongehalte: 40% bis 58%) zur Hervorhebung des autochthonen Charakters als T-Horizonte geführt, obwohl sie das Normkriterium (> 65 Gew.-% Ton) nicht erfüllen. Aufgrund der hohen Humusgehalte ist die reife Polsterrendzina (Oh/Oh+T/(T)Cv) ein Sonderfall. Sie wäre bei geringeren Gehalten an organischer Substanz (< 30%) am ehesten der Terra fusca-Rendzina (Ah /Ah+ (Bv-) T/TCv/C) vergleichbar. Gegen die Bezeichnung "Braunerde-Rendzina" (bzw. Lehmrendzina) von REHFUESS (1982, S. 46) spricht jedoch der markante T-Horizont.

4.5.2 Die allochthonen Böden

A) Charakterisierung

Allochthone Braunerden sind an lösslehmartige Substrate gebunden, die in unterschiedlicher Flächenausdehnung vor allem in Lee-Positionen erhalten sind. Die Herkunft der ehemaligen Primärlösse ist durch die kristallinen Mineralspektren belegt, die den rezenten Flugstäuben ähnlich sind. Die nicht-rezent abgelagerten Lössdecken sind intensiv umgelagert worden (Erosion, Solifluktion etc.). Sie bedingen in der Westlichen Karwendelgrube ausgeprägte Formen der gebundenen und halbgebundenen Solifluktion. Allgemein sind Lössbraunerden mit stark glimmerhaltigen B-Horizonten entstanden, die hohe Schluffgehalte (64% bis 85%) und häufig Feinstsand zeigen. Auffällig hohe Feinsandgehalte zeigen die B-Horizonte (Sandlehme, Lehmschluffe) in der Westlichen Karwendelgrube, die vermutlich aus ehemaligen Sandlössen entstanden sind. Der Mineralbestand zeigt das typische Lössspektrum (Quarz, Feldspäte, Glimmer, illitreiches mixed-laver Material + Illit). In allen Gebieten dominieren Plagioklase die Feldspäte. Durch die hohen Gehalte an Siliziumoxid (43% bis 82%) ist die Versauerung in allen Bv-Horizonten deutlich fortgeschritten. Besonders in den Podsolen und Pseudogley-Braunerden der Reiteralpe führt die Bodenversauerung zur Bildung von Chlorit und Kaolinit. In den meisten Fällen ist in den Bodenkomplexen der Deckschichten lithologische Schichtung nachweisbar. Die Bodenfarbe bewegt sich im typischen Spektrum der Lösslehme (z.B. 10 YR 4/4; 10 YR 6/3; 10 YR 6/6). Die oft hohen Humusgehalte drücken sich nicht in einer Schwarzfärbung der B-Horizonte aus (Tongehalte: 9% bis 20%). Die Eisengehalte in den Bv-Horizonten von ZP und RA sind wieder sehr ähnlich (7% bis 11%), während sie in der WKG nur 2% bis 4% betragen. Die Schwermineralspektren zeigen für alle B-Horizonte eine Dominanz der Epidot-Zoisit-Gruppe mit grüner oder brauner Hornblende. Typisch für WKG und ZP ist Granat, je nach Probe wechselnd zwischen 1. und 2. Häufigkeit. Das deutet auf geologisch ähnliche Liefergebiete hin. Der Granatgehalt tritt auf der RA nur in Ausnahmefälle (II Bv+Cv-Horizonte) in Dolinenfüllungen markant hervor. Der Reichtum an magnetischen Mineralen kann dort auch ein Zeiger für tertiäre Verwitterungsprodukte sein (KNAPCZYK-HASEKE 1989; LANGENSCHEIDT 1995), Die Anreicherung von Eisen und Mangan in den Höhlensedimenten der Reiteralpe wird durch die Remobilisation aus den Sedimenten der Augensteinlandschaft zu Beginn des Oligozäns interpretiert (GILLITZER 1912; CLEMENS et al. 1995).

B) Einordnung und Klassifizierung

Die allochthonen Mineralböden gehören den Klassen der Braunerden und Podsole an. Der Grundtyp ist eine "Lössbraunerde über Kalkstein" oder - die Deckschichten-Theorie stützend - eine "Lößbraunerde aus äolischer Deckschicht über Residualton bzw. initialer Terra fusca".

C) Verwitterungsgrad und Alterseinschätzung

Eine Aussage über den Verwitterungsgrad läßt sich mit Hilfe von Verwitterungsindices auf der Basis der Hauptelementverteilung vornehmen (BÄUMLER et al. 1996, 2002).

Neben dem Verwitterungsindex von KRONBERG und NES-BITT (1981) eignet sich für Karstböden sehr gut der Quotient SiO₂ / Al₂O₃+Fe₂O₃ (PFEFFER 1969b, S. 420). Die Quotienten betragen für die allochthonen Braunerden im Mittel 1,7 (ZP), 2,2 (RA) und 7,5 (WKG). Ursachen für den hohen Wert in den Böden der Westlichen Karwendelgrube sind das sandige Ursprungssubstrat und die schlechteren Verwitterungsbedingungen im periglazialen Milieu der Großdoline.

Vergleichbare Verwitterungsgrade werden durch die Quotienten der Braunerde-Subtypen angezeigt: 2,4 (podsolige Braunerde), 2,2 (Podsol-Braunerde), 2,4 (Pseudogley-Braunerde). Zieht man den Verwitterungsquotienten nach PFEFFER (1969) für die autochthonen T-Horizonte (T-, Bv-T) heran, dann liegen die Quotienten zwischen 1,6 (RA: T-Horizont) und 2,6 (ÖKG: T-Horizont). Spektakulär ist der Wert 0,6 für die T-Horizonte auf dem ZP. Sie weisen auch von allen untersuchten T-Horizonten die höchsten Al₂O₃-Werte (22% bis 38%) und in manchen Fällen Gibbsit auf. Da subtropische und tropische Verwitterungsmilieus durch deutlich erhöhte Al₂O₃-Gehalte und geringere SiO₂-Gehalte auffallen (PFEFFER 1969b), könnten die Gibbsit-Funde und der Quotient von 0,6 tertiäres Alter für den Braunlehmrest ZP P33 motivieren.

Eine vergleichbare Interpretation ließen auch die Labordaten für drei kräftig rotgefärbte T-Horizonte auf der Reiteralpe zu. Aufgrund der Verwitterungsquotienten nach PFEFFER (1969) von 1,3 bzw. 1,4 (RA_1/2 und RA_P7/2) könnte hier die Rubifizierung der Kluftkarrenfüllungen auch paläoklimatisch (tertiärer Rotlehmrest) gedeutet werden. In den meisten Fällen ist die Rotfärbung aber als lithologische "Entcarbonatisierungsröte" zu werten.

Die folgenden Tabellen 90 bis 93 geben einen zusammenfassenden Überblick der Bodenbildung.

Tab. 90: Vergleich der Bodenkennwerte (Pedologie, Mineralogie) von autochthonen Mineralbodenhorizonten (T-, Bv-T).

Parameter	Zugspitzplatt	Westliche Karwendelgrube	Östliche Karwendelgrube	Reiteralpe
Org. Substanz	Oh+T: stark bis sehr stark (9 bis 22%) T-Horizonte:mittel bis stark humos (6% bis 7%)	Oh+T: stark bis sehr stark (8% bis 17%) T-Horizonte:mittel bis stark humos (5% bis 8%)	stark bis sehr stark humos 5% bis 16%	stark bis sehr stark humos 8% bis 15%
pH-Wert	mittel sauer Oh+T-Horizonte: 5,7 bis 6,0 T-Horizonte: 5,6 bis 5,9	stark bis mittel sauer 4,6 bis 6,0	stark bis schwach alkalisch 4,8 bis 6,8	stark sauer bis schwach alkalisch Bv-T-Horizonte 3,9 –4,5; T-Horizonte 4,5 bis 7,7
Karbonatgehalt	karbonatarm (2% bis 4%)	schwach bis mittel (2,5% bis 7%)	frei bis karbonatarm (<2%)	frei bis schwach karbonathaltig (>2% bis 3%)
Farbe	Oh+T-Horizonle: schwarzbraun (10YR 3/2; 7.5 YR 4/4) T-Horizonte: braun (10YR 4/4; 7.5 YR 4/4)	Oh+T-Horizonte: schwarzbraun bis dunkelgrau (10 YR 4/2; 7,5 YR 3/1; 5Y 3/2) T-Horizonte: olive, braun (5 Y 4/3; 7,5 YR 3 /4)	T-Horizonte: heligelb bis olivbraun (2.5 Y 7/4; 2.5 Y 5/2; 2.5 Y 4/3) Bvh-T-Horizonte: grau bis graubraun (2.5 Y 3/1; 2.5 Y 3/3; 2.5 Y 4/1)	rötlich-schwarz (2,5 YR 2,5/1; 2,5 YR 3/2) dunkelbraun (7,5 YR 3/3, 7,5 YR 2,5) hellbraun (7,5 YR 6/4) rotgelb, gelbrot (5 YR 6/8; 5 YR 5/6) (rot (2,5 YR 4/6)
Bodenarten- gruppe	Schluffton, Lehmton	Schluffton	Schluffton	je nach Ausgangsgestein: Sandlehm, Tonschluff, Ton
Tongehalt	Oh+T-Horizonte: 39% bis 45% T-Horizonte: 42% bis 57%	Oh+T: 39% T-Horizonte: 35% bis 41%	T-Horizonte: 27% bis 34% Bvh-T-Horizonte: 23% bis 29%	T-Horizonte: 35% bis 48% Bv-T-Horizonte: 20% bis 30%
Schluff-Fraktion	Oh+T-Horizonte: 48% bis 60% T-Horizonte: 40% bis 55%	Oh+T-Horizonte: 55% bis 60% T-Horizonte: 52% bis 55%	T-Horizonte: 53% bis 64% Bvh-T-Horizonte: 64% bis 66%	T-Horizonte: 48% bis 60% Bv-T-Horizonte: 40% bis 60%
Silikatische Leichtminerale	Quarz, Gibbsit, Calcit, Dolomit Illit > Chlorit > Kaolinit Chlorit > Kaolinit > Illit-Material	Quarz, Albit Illit > Chlorit > mixed layer-Material >Kaolinit	Quarz, Orthoklas Illit > Chlorit > mixed layer-Material >Kaolinit	Quarz, Albit, Kalifeldspäte B-Horizont: Illit>Chlorit>Kaolinit Bv-T-Horizonte: Illit >Kaolinit>Chlorit
Haupt- u. Spu- renelemente	T-Horizont: - SiOz 20% bis 35% - Al ₂ O ₃ 29% bis 38% - Fe ₂ O ₃ 13% bis 14% - Anstieg der Lanthanoide (La, Ce, Nd, Y)	keine Analysen von Oh+T, zu wenig Feinerde	T-Horizont: - SiO ₂ : 39% - Al ₂ O ₃ : 10% - Fe ₂ O ₃ : 3% Bvh-T-Horizonte: - SiO ₂ : 54% - Al ₂ O ₃ : 15% - Fe ₂ O ₃ : 7%	T-Horizonte - SiO ₂ : 39% bis 44% - Al ₂ O ₃ : 18% bis 23% - Fe ₂ O ₃ : 8% bis 10% Bv-T-Horizonte: - SiO ₂ : 39% bis 62% - Al ₂ O ₃ : 16% bis 18% - Fe ₂ O ₃ : 7% bis 8%
Schwermineral- bestand	Kompopulation gering, opakreich extrem Stabile sind häufig	keine Analysen von Oh+T, zu wenig Feinerde	 Homblende+Epidot/Zoisit. 50% > Granat (20%) Anreicherung von Stabilen, magne- tische Kömer 	 Homblende+Epidot/Zoisit (55% bis 68%) > Granat (35% bis 37%) T-Horizonte: Anstieg der Stabilen, magnetische Körner
Schwermine- ralmenge	sehr gering	gering bis sehr gering ,meist < 0,1mm	gering bis sehr gering, meist < 0,1mm	Bv-T-Horizonte: mäßig ; meist < 0,1mm T-Horizont: sehr gering

Tab. 91: Vergleich der Bodenkennwerte (Pedologie, Mineralogie) von allochthonen Mineralbodenhorizonten (Bv-).

Parameter	Zugspitzplatt	Westliche Karwendelgrube	Reiteralpe
Org. Substanz	mittel bis stark humos 3% bis 8%	humos bis mittel humos (2% bis 6%)	schwach bis mittel humos (1% bis 6%) je nach Humusdynamik (Bvh mit 10%)
pH-Wert	stark bis schwach sauer 4,9 bis 6,2	sehr stark bis stark sauer 3,9 bis 4,3	sehr stark bis mittel sauer 4,1 bis 5,6 (je nach Podsolierung)
Karbonatgehalt	frei bis schwach karbonathaltig (<2% bis 3%)	frei bis schwach karbonathaltig (<2% bis 4%)	frei bis schwach karbonathaltig (<2% bis 4%)
Farbe	braungelb bis braun (10YR 4/4; 10YR 5/3; 7.5 YR 4/4; 7.5 YR 5/4)	hellgelb bis braun (10YR 6/3; 10YR 5/6; 10YR 5/8)	heilbraun bis gelb (10 YR 6/3; 10 YR 7/6;10YR 6/6; 10 YR 6/4)
Bodenartengruppe	Lehmschluff, Tonschluff	je nach Sandgehalt: Sandlehme, Lehmschluffe, Tonschluffe	Sandschluffe, Lehmschluff, Tonschluffe
Tongehalt	10% bis 20%	9% bis 15%	9% bis 17% je nach Horizonttyp und -tiefe
Schluff-Fraktion	65% bis 85%	41% bis 54%	64% bis 82%
Silikatische Leichtmine- rale	Quarz, Albit, Glimmer, Illitvertreter illitreiches mixed-layer Material>Kaolinit, Chlorit	Quarz, Albit, Glimmer, Illitvertreter illitreiches mixed-layer Material + Illit > Chlorit, kein Chlorit!	Quarz, Albit, Chlorit, Glimmer+Illitvertreter Illit (>46%) > Chlorit (30% bis 45%)Kaolinit (14% bis 28%),
Haupt- u. Spurenele- mente	 SiO₂ 43% bis 53% Al₂O₃ 18% bis 22% Fe₂O₃ 7% bis 11% Tiefenfunktion von CaO+MgO Anreicherung von Ba, Zr, Zn, Sr, V, Rb 	 SiO₂ 74% bis 82% Al₂O₃ 7% bis 8% Fe₂O₂ 2% bis 4% CaO+MgO zwischen 1 und 1,5% Anreicherung von Ba, Zr, Zn, Sr, Rb 	 SIO₂ 59% bis 62% Al₂O₃ 15% bis 17% Fe₂O₃ 7% bis 11% Tiefenfunktion CaO+MgO Anreicherung von Ba, Zr, Zn, Sr, Rb
Schwermineralbestand	 eisenreiche Glieder der Epidot-Zoisit-Gruppe + Granat Hornblende ist nicht selten (5% bis 31%) Stabile 3% bis 7% einige Magnetitkörner Chloritoide 	 Granat + Hornblende (43% bis 56%) Epidot+Zoisit-Gruppe Stabile 12% bis 17% kaum magnetische Minerale,Karbonatkorngehalt von Exposition der Profile abhängig Chloritolde 	 Epidot+Zoisit-Gruppe (45% bis 77%) + Homblende (10% bis 50%) Stabile 5% bis 7% z.T. Reichtum an magnetischen Mineralen, kein Karbonatkom Chloritoide z.T. "molasseartiges Spektrum"
Schwermineralmenge	mäßig, meist < 0,1mm	mäßig, meist < 0,1mm	mäßig, meist < 0,1mm

Tab. 92: Gegenüberstellung und Einordnung der autochthonen Mineralböden	(AG BODEN 1996; WRB 2000)
---	---------------------------

Gebiet:	Zugspitzplatt	Westliche Karwendelgrube	Östliche Karwendelgrube	Reiteralpe
Klasse: Tvp:	Ah / C –Boden, Terrae calcis Rendzina, Terra fusca	Ah / C –Boden, Terrae calcis Rendzina, Terra fusca	Ah / C -Boden, Terrae calcis Rendzina, Terra fusca	Ah / C -Boden, Terrae calcis, Braunerde, Lessivé Rendzína, Terra fusca
Subtypen: aus Festgestein	Sonderfall: reife Poisterrendzina Oh / Oh+T/ (T) / mC (developed Folic Histosol)	Sonderfall: reife Polsterrendzina Oh / Oh+T/ (T) / mC (developed Folic Histosol)	Braunerde-Terra fusca (Ah) / Bv-T / mC (Cambisol with features of Chromic Cambisol)	Braunerde-Terra fusca (Ah) / Bv-T / mC (Cambisol with features of Chromic Cambisol) Terra fusca-Rendzina (Ah) / (Bv-)T/ mC (Chromic Cambisol, initial)
aus Lockersubstraten (Schutt, Hangschutt)	Mullartige Rendzina Ah / Ah+Bv / IC (Humic Regosol)	Mullarlige Rendzina Ah / Ah+Bv / IC (Humic Regosol)	Mullartige Rendzina Ah / Ah+Bv / IC (Humic Regosol)	Mullartige Rendzina Ah / Ah+Bv / IC (Humic Regosol) Terra fusca-Rendzina (Ah) / (Bv-)T/ mC (Chromic Cambisol, initial)
aus Schutt von Brek- zien	nur jenseits von 2300m vorhandenil Residualtontapeten	nicht vorhanden	Terra fusca-Rendzina (Ah) / (Bv-)T/ mC (Chromic Cambisol, initial)	flach- und mittelgründige Terra fusca (Entwicklungstiefe mittel) Ah / T / TCc / ICv (Chromic Cambisol)
aus Lokalmorăne	reife Polsterrendzina Oh / Oh+T/ T / IC (developed Folic Histosol)	reife Polsterrendzina Oh / Oh+T/ T / IC (developed Folic Histosol)	nicht vorhanden	podsolige Braunerde Ahe / Ae / Bsv / ICv (Ferralic Cambisol)
aus Lokalmoräne mit Liasgeschieben	nicht vorhanden	nicht vorhanden	nicht vorhanden	Spezialfall: Parabraunerde über Kalkverwitterungslehm Ah / Al / Btv / Bv / II Bt / III Ah / Bt / Bv / ICv (Luvisol over relic Chromic Cambisol)
aus Gosaudecken- resten (Kalke, Mergel)	nicht vorhanden	nicht vorhanden	nicht vorhanden	Pseudogley-Braunerde Ah / Bsv / Sw / II Sd / Bv+Cv / ICv (Gleyi-stagnic Cambisol) podsolige Braunerde Ahe / Ae / Bsv / ICv (Ferralic Cambisol)

Tab. 93: Gegenüberstellung und Einordnung der allochthonen Mineralböden (AG BODEN 1996; WRB 2000).

Gebiet	Zugspitzplatt	Westliche Karwendelgrube	Reiteralpe
Klasse:	Braunerde	Braunerde	Braunerde, Podsol
Typ:	Braunerde	Braunerde	Braunerde, Podsol
Grundtypen	Lößbraunerde über Terra fusca aus Wettersteinkalk	(kolluviale) Lößbraunerde über initialer Terra fusca bzw.	(kolluviale) Lößbraunerde über Terra fusca bzw.
	(bzw. Residualton)	Residualtontapeten aus Muschelkalk	Residualton aus Dachsteinkalk
aus äolischer Deck- schicht über autochthonem Fest- gestein	(Ah) / Bv / II (Tc) / mCv Braunerde über Kalkstein (Cambisol)	Ah/ II (TCV) / mCv Äolische Mullrendzina (<i>Mollic Leptosol</i>) Bv / II (TCv) / mCv mittelgründige Braunerde über Kalkstein (<i>Cambisol over Calcaric Leptosol</i>)	Ah / Bv1 / Bv-IIT / TmCv Braunerde über Terra fusca bzw. Residualton (Cambisol with features of Chromic Cambisol) Ah / (Ahe) Bvh / /II mCv Braunerde, podsolige Braunerde (Cambisol) Podsol-Braunerde Ahe / Bsv / Sd-Bv-IIT / mCv (Ferralic Cambisol) Podsol
aus äolischer Deck-	Ah / Bv / II T / ICv	Ah / Bv / Bv+Cv / II (T) / ICv	nicht vorhanden
schicht / Kolluvium	Braunerde über flachgründiger Terra fusca	flach- bis mittelgründige Braunerde über Terra fusca	
über autochthonem	(Cambisol over Chromic Cambisol)	(Cambisol over calcaric Regosol with features of chromic B)	
aus äolischer Deck- schicht über Lokal- moräne	Ah / Bv / II T / ICv Braunerde über flachgründiger Terra fusca (Cambisol over Chromic Cambisol)	nicht vorhanden	Lokalmoräne nur in Dolinen erhalten, Oberflächen- nahe Horizonte rezent äolisch überprägt Pseudogley-Braunerde Ah / Bsv / Sw / II Sd / II Bv / ICv (Gleyi-stagnic Cambisol)
Klasse:	Braunerde / Terrae calcis	Braunerde / Terrae calcis	Braunerde / Terrae calcis
Typ:	Braunerde / Terra fusca	Braunerde / Terra fusca	Braunerde / Terra fusca
Mischformen	Lößbeeinflußter Residuation oder residualvermisch-	Lößbeeinflußter Residualton oder residualvermischter	Lößbeeinflußter Residualton oder residualvermisch-
	ter Lößlehm	Lößlehm	ter Lößlehm
	(Ah) / Bv-T (Btv) / II Cv	(Ah) / Bv-T (Btv) / II Cv	(Ah) / Bv-T (Btv) / II Cv
	(Chromic Cambisol with characteristics of Cambisol)	(Chromic Cambisol with characteristics of Cambisol)	(Chromic Cambisol with characteristics of Cambisol)
5 Flugstaubquantifizierung und äolische Dynamik

5.1 Ergebnisse zur Staubquantifizierung auf Schneeoberflächen

Die Deposition auf Schneedecken setzt sich aus verschiedenen Teilkomponenten des Flugstaubs zusammen. Die im folgenden vorgestellten Staubeinträge beziehen sich auf den Silikatanteil.

F,		Flugstaub durch	(> 500 km, z.B. Sahara)
Fm	đ	Flugstaub aus mittlerer	(,
		Entfernung	(> 50 km, Zentralalpen)
Fn	1	Flugstaub durch Nahtransport	(< 50 km, kalkalpine Umgebung)

Dazu treten Sedimente S_i aus dem lokalen Umfeld (Entfernung < 5 km).

Ein Maß für die Beteiligung der Teilkomponenten aus den entsprechenden Liefergebieten kann nur halbquantitativ mit den Kategorien "stark, mittel, wenig" gegeben werden (Tab. 94).

5.1.1 Staubeintrag - Schneedeckenaufbau

Die Phase des Schneedeckenaufbaus wird in den Messzeiträumen der Jahre 2002 und 2003 durch 11 Intervalle berücksichtigt. Sie umfassen Staubproben aus nasser Deposition sowie aus trockener Deposition ohne Neuschneezuwachs.

Die ermittelten Eintragsraten schwanken zwischen 0,7 mg/m²/d und 55 mg/m²/d (Mittelwert: 12 mg/m²/d). Die Staubraten aus Neuschneehorizonten (M1 bis M7) sind bei antizyklonaler Südwestlage und zyklonaler

Tab. 94: Schema zur Beteilun	g des Flugstaubs aus verschier	denen Liefergebieten.
------------------------------	--------------------------------	-----------------------

Rel	ief- und Klimabedingte Gegebenheiten:	Anteil des potentiellen Flugstaubein trags aus den Liefergebieten					
1A)	Phase des Schneedeckenaufbaus (Herbst):	Fr	Fm	Fn	S		
-	Südliche Liefergebiete in Ferndistanz: o schneefrei, Maximum der herbstlichen Sandsturmtätigkeit	XXX	0	0	0		
•	Zentralalpen in mittlerer Distanz: o noch schneefreie Höhenstufen unterhalb der Baumgrenze	0	x	0.	0		
1	Zentralalpen in mittlerer Distanz: O Höhenstufen jenseits der Waldgrenze bereits partiell schneebedeckt	0	x	0	0		
÷,	Untersuchungsgebiete und Umgebung: o noch schneefreie Höhenstufen unterhalb der Baumgrenze	0	0	Х	x		
ř	Untersuchungsgebiete und Umgebung: O Höhenstufen jenseits der Waldgrenze bereits partiell schneebedeckt	0	0	X	×		
Gro	ßwetterlagen mit Föhnereignissen im Oktober häufig	XXX	X	X	0		
1B)	Phase des Schneedeckenabbaus (Winter):	Fr	Fm	Fn	Si		
-	Südliche Liefergebiete in Ferndistanz: o schneefrei, Südwindtätigkeit mit Staubtransport zwischen Dezember und Februar möglich	XXX	0	Q	0		
•	Zentralalpen in mittlerer Distanz: o alle Höhenstufen in mittlerer Distanz schneebedeckt	0	0	0	0		
-	Untersuchungsgebiete und Umgebung: schneebedeckt	0	0	0	0		
2) F	Phase des Schneedeckenabbaus (Frühjahr):	Fr	Fm	Fn	Si		
-	Südliche Liefergebiete in Ferndistanz: o schneefrei, Föhnereignissen sowie Staubstürme in der Sahara zwischen April und Mai häufig	XXX	XX	X	x		
-	Zentralalpen in mittlerer Distanz: Täler schneefrei	0	0	0	0		
Ī	Zentralalpen in mittlerer Distanz: O Höhenstufen unterhalb der Waldgrenze sukzessive schneefrei	0	x	0	0		
-1	Untersuchungsgebiete und Umgebung: o jenseits der Waldgrenze noch partiell schneebedeckt	0	0	X	X		

Tab. 95: Silikatstaubmengen von Neuschneeoberflächen, Schneedeckenaufbau.

Messintervall und Wetterlage			Gebiet	Silikatstaub- summe [mg/m²]	Aufbau von 1cm Neuschnee (Tage)	Staubakkumula- tion (Tage)	Eintragsrate [mg/m²/d]
M1	(2426.10.02)	Wa	KG	6,0	2	0	3,0
M2	(01 02.02.02)	SWa	RA	1,0	1	0	1,0
M3	(0608.04.02)	HF	ZP	6,3	2	0	3,2
M4	(1011.04.02)	TrM	ZP	9,3	1	0	9,3
M5	(31.12.02-03.01.03)	Wz	KG	20,0	3	0	6,7
M6	(2223.01.03)	TrW	ZP	55,0	1	0	55,0
M7	(0405.02.03)	N+NWz	RA	1,0	1	0	1,0
M8	(0611.12.02)	HFa	RA	25,0	0	5	5,0
M9	(0111.01.02)	HM / HBrM	RA	9,0	0	10	0,9
M10	(1013.02.03)	HBrM	KG	2,1	0	3	0,7
M11	(0923.02.03)	HBrM / Sa	ZP	351	0	13	27,0

Erläuterungen:

z = zyklonal, a = antizyklonal; H = Hoch; HBr = Hochdruckbrücke; HF = Hoch ü. Fennoskandien; M = Mitteleuropa; N, NW = Nord-, Nordwestlage; S= Südlage; SE = Südostlage, SW = Südwestlage; TrW= Trog über Westeuropa; W = Westlage

Tab. 96: Verteilung der Windtätigkeit [m/s · h] berechnet für die Hauptwindsektoren, Schneedeckenaufbau.

Messintervall und Wetterlage		Nordsektor (301°-30°)	Ostsektor (31°-120°)	Südsektor (121°-210°)	Westsektor (211°-300°)	Eintragsrate [mg/m²/d]	
M1	(2426.10.02)	Wa	62,3	0	48,6	585,0	3,0
M2	(01 02.02.02)	SWa	1,3	0	0	135,4	1,0
M3	(0608.04.02)	HF	105	0	0	162	3,2
M4	(1011.04.02)	TrM	0	0	203,5	43,4	9,3
M5	(31.12.02-03.01.03)	Wz	40	4,3	5,1	20	6,7
M6	(2223.01.03)	TrW	34	0,7	221,2	40,4	55,0
M7	(0405.02.03)	N+NWz	40,5	16,5	5,1	82,5	1,0
M8	(0611.12.02)	HFa	0,8	8,7	86,7	2,4	5,0
M9	(0111.01.02)	HM / HBrM	2,9	3,2	25,4	60,1	0,9
M10	(1013.02.03)	HBrM	0,7	5,5	24,3	5,3	0,7
M11	(0923.02.03)	HBrM / Sa	1,4	12,9	83,0	7,8	27,0

Erläuterungen:

z = zyklonal, a = antizyklonal; H = Hoch; HBr = Hochdruckbrücke; HF = Hoch ü. Fennoskandien; M = Mitteleuropa; N, NW = Nord-, Nordwestlage; S= Südlage; SE = Südostlage, SW = Südwestlage; TrW= Trog über Westeuropa; W = Westlage

Nord- und Nordwestlage am geringsten. Die Raten aus trockener Deposition (M8 bis M11) zeigen die Minima bei Hochdrucklagen und Hochdruckbrücke über Mitteleuropa. Hingegen treten die Maxima nach der Troglage über Westeuropa (M6) und der beginnenden antizyklonalen Südlage (M11) auf, zwei wichtige Wetterlagen mit möglichen Südwindereignissen (Tab. 95).

Abhängigkeit von der Windtätigkeit (Hauptwindsektoren)

Der Vergleich der Staubraten aus Tab. 95 mit der Summe der Windtätigkeit pro Messintervall zeigt ohne Aufgliederung der Windrichtung keinen Zusammenhang mit den Staubraten (r = +0,17). Deutlichere Ergebnisse bringt die Aufteilung der Windtätigkeit in die Hauptwindsektoren (N, E, S, W). Sehr hohe Silikateinträge treten in Intervallen mit hoher Windtätigkeit aus dem Südsektor auf, verknüpft mit den Großwetterlagen "Trog über Westeuropa" (M4, M6) und der antizyklonalen Südlage (M11). Im Gegensatz dazu liefern die Windtätigkeiten aus dem zweithäufigsten Westsektor sowohl in Intervallen ohne andere Winde (z.B. antizyklonale Südwestlage M2) als auch bei hoher Windtätigkeit (M1, M2) nur sehr geringe Raten. Keine klare Aussage läßt sich hinsichtlich des Einflusses der Winde aus dem Nordsektor treffen. So gut wie keinen Einfluss haben östliche Winde (M7). Hier spiegelt sich die generell geringe prozentuale Häufigkeit des Ostsektors an den Stationen Zugspitze und Linderspitze wider (Tab. 96).

B) Abhängigkeit von der Windtätigkeit (Südliche Richtungen)

Eine weitere Aufteilung in 30°- Sektoren wird durchgeführt und die Korrelation der täglichen Windtätigkeit [m/s · h] pro Richtung mit den Staubeintragsraten untersucht (Tab. 97). Tab. 97: Korrelationskoeffizienten r zur Beschreibung des Zusammenhangs zwischen Staubrate und täglicher Windtätigkeit pro Richtungssektor, Schneedeckenaufbau.

1000	Nordsektor		Ostsektor		Südsektor			Westsektor				
	301- 331°	331- 360°	1- 30°	31- 60°	61- 90°	91- 120°	121- 150°	151- 180°	181- 210°	211- 240°	241- 270°	271- 300°
r =	0	+0,21	-0,19	-0,19	-0,12	0	+0,49	+0,81	+0,36	+0,18	-0,25	-0,31

Tab. 98: Silikatstaubmengen von Schneeoberflächen, Schneedeckenabbau (Frühjahr).

Messintervall und Wetterlage			Gebiet	Silikatstaub- summe [mg/m²]	Aufbau von 1cm Neu- schnee (Tage)	Staubak- kumulation (Tage) ¹⁾	Eintragsrate [mg/m²/d]
M1	(29.0401.05.02)	Wz	KG	16,8	2	0	8,4
M2	(1112.05.02)	SEa	KG	17,0	1	0	17,0
M3	(0611.05.02)	SEz	RA	675	0	5	135,0
M4	(1317.05.02)	SWz / HBrM	KG	91	0	6	15,2
M5	(1931.05.02)	HBrM / TrM / HM	ZP	692	0	12	57,6
M6	(19.57.06.02)	HBrM / Tr M / HM / SEz	ZP	1068	0	19	56,2
M7	(1720.06.02)	SWa	ZP	177	0	3	59,0
M8	(0307.05.03)	SWz / HBrM	RA	312	0	4	78,0
M9	(0309.05.03)	SWz / HBrM	KG	488	0	6	81,3
M10	(2330.05.03)	Trog M / HM	KG	525	0	7	75,0
M11	(2631.05.03)	Trog M / HM	ZP	412	0	5	82,5

Erläuterungen:

z = zyklonal, a = antizyklonal; H = Hoch; HBr = Hochdruckbrücke; HF = Hoch ü. Fennoskandien; M = Mitteleuropa; N, NW = Nord-, Nordwestlage; S= Südlage; SE = Südostlage, SW = Südwestlage; TrW= Trog über Westeuropa; W = Westlage 1) Bei M1 bis M2 (Neuschneeproben) wird angenommen, daß aufgrund des *wash-out* keine zusätzliche trockene Deposition stattfindet.

Tab. 99: Mittlere Windtätigkeit pro Tag [m/s · h] aus dem Südsektor in den Intervallen Frühjahr und Winter.

Prohan	Mittlere Windtätigkeit pro Tag [m/s ·h]								
Proben	121-150°	151-180°	tigkeit pro Tag [m/s · h] -180° 181-210° 35,8 14,2 27,8 14,2	121-210°					
Frühjahrsintervalle F	50,0	35,8	14,2	100					
Winterintervalle W	22,1	27,8	14,2	64,1					
Faktor F / W	2,3	1,3	1,0	1,6					

Im Verlauf der aufbauenden Schneedecke führen Wetterlagen mit ausgeprägter Windtätigkeit aus Süd (151°-210°), besonders aus SSE bis S (151°-180°), zu hohen Einträgen. Fast kein Zusammenhang besteht mit dem Vorherrschen anderer Winde.

Diese Zusammenhänge sind wegen der geringen Datenmenge (n=11) vorläufig als Trends zu verstehen. Auffällig ist aber der positive lineare Zusammenhang der Staubraten pro Intervall mit den Winden aus SE bis Süd (151°-180°) mit r = +0,81. Er ist bei Winden aus den Sektoren 121°-150° und 181°-210° deutlich schwächer.

5.1.2 Staubeintrag - Schneedeckenabbau

Die Phase der abbauenden Schneedecke (Frühjahr) wird durch 13 Intervalle berücksichtigt, die ebenfalls Staubproben aus nasser Deposition durch Schneefall sowie aus trockener Deposition ohne Neuschneezuwachs umfassen.

Die geringsten Einträge werden nach zyklonaler Westlage (M1) und Südwestlage (M4), das Maximum nach zyklonaler Südostlage (M3) festgestellt. Die mittlere Rate auf Schneeoberflächen im Frühjahr beträgt 64 mg/m²/d und ist damit 5-mal höher als der mittlere Winterwert (12 mg/m²/d) (Tab. 98).

Aufgrund der festgestellten linearen Abhängigkeiten stellt sich die Frage, ob die hohen Staubraten der Frühjahrsintervalle (M1 bis M11) eine Folge der gesteigerten Südwindaktivität sind. Deshalb werden die herrschenden Südwindtätigkeiten in den Intervallen von Winter und Frühjahr miteinander verglichen (Tab, 99).

Es zeigt sich zum Frühjahr hin ein Anstieg der mittleren Windtätigkeit aus dem Südsektor um den Faktor 1,6. Am deutlichsten hat die Windtätigkeit im Sektor 121°-150° zugenommen (Faktor 2,3). Insgesamt besteht im

Messintervall und Wetterlage			Nordsektor (301-30°)	Ostsektor (31-120°)	Südsektor (121-210°)	Westsektor (211-300°)	Eintragsrate [mg/m²/d]
M1	(29.0401.05.02)	Wz	7,4	19,5	46,5	4,0	8,4
M2	(1112.05.02)	SEa	0,0	2,0	205,0	76,3	17
M3	(0611.05.02)	SEz	1,3	2,5	419,3	15,0	135,0
M4	(1317.05.02)	SWz / HBrM	11,4	16,1	12,8	16,2	15,2
M5	(1931.05.02)	HBrM / TrM / HM	28,4	2,4	67,7	52,7	57,6
M6	(19.57.06.02)	HBrM / Tr M / HM / SEz	36,2	1,8	69,4	51,3	56,2
M7	(1720.06.02)	SWa	42,8	1,9	15,4	78,9	59,0
M8	(0307.05.03)	SWz / HBrM	10,3	0,0	112,9	90,6	78,0
M9	(0309.05.03)	SWz / HBrM	6,8	0,0	134,0	63,9	81,2
M10	(23,-30.05.03)	Trog M / HM	57,2	2,6	80,4	17,0	75,0
M11	(2631.05.03)	Trog M / HM	9,0	16,5	70,1	12.0	82,5

Tab. 100: Verteilung der Windtätigkeit [m/s · h] berechnet für die Hauptwindsektoren, Schneedeckenabbau.

Erläuterungen:

z = zyklonal, a = antizyklonal; H = Hoch; HBr = Hochdruckbrücke; HF = Hoch ü. Fennoskandien; M = Mitteleuropa; N, NW = Nord-, Nordwestlage; S= Südlage; SE = Südostlage, SW = Südwestlage; TrW= Trog über Westeuropa; W = Westlage

1) Bei M1 bis M2 (Neuschneeproben) wird angenommen, daß aufgrund des wash-out keine zusätzliche trockene Deposition stattfindet.

Tab. 101: Korrelationskoeffizienten r zur Beschreibung des Zusammenhangs zwischen Staubrate und täglicher Windtätigkeit pro Richtungssektor, Schneedeckenabbau.

	Nordsektor		Ostsek	Ostsektor		Südsektor			Westsektor			
	301- 331°	331- 360°	1- 30°	31- 60°	61- 90°	91- 120°	121- 150°	151- 180°	181- 210°	211- 240°	241- 270°	271- 300°
r =	0	0	0	-0,60	-0,21	-0,43	+0,63	+0,80	+0,42	0	0	0

Vergleich zur starken Zunahme der Staubraten (Faktor 5) nur eine mäßige Erhöhung der Südwindtätigkeit. Somit sind bei den stark erhöhten Staubraten im Frühjahr auch noch andere Faktoren zu vermuten, wie z.B. die Windtätigkeit aus anderen Richtungssektoren oder jahreszeitlich bedingte Einflüsse (z.B. Schneebedeckung der Liefergebiete, Vegetationsentwicklung etc.).

Abhängigkeit von der Windtätigkeit (Hauptwindsektoren)

Hohe Südwindtätigkeit bedingt hohe Silikateinträge (M2, M3, M9). Jedoch gibt es auch Fälle, wo bei geringerer Windtätigkeit aus Süd höhere Werte (M11) gemessen werden, als in solchen mit starker Südwindtätigkeit (M 2) (Tab. 100).

B) Abhängigkeit von der Windtätigkeit (Südliche Richtungen)

Die Unterteilung in 30°- Windsektoren und ihr Einfluss auf die Silikatstaubraten werden durch lineare Einfachregressionen überprüft. Die resultierenden Korrelationskoeffizienten zeigen nur für die Sektoren der Südrichtungen positive Zusammenhänge. Wieder ist der Einfluss des Sektors SE bis Süd (151°-180°) besonders stark, wobei die Frage bleibt, ob eine Einheit Windaktivität aus diesem Sektor (151°-180°) im Winter dieselbe Menge Silikatstaub liefert wie im Frühjahr (Tab. 101).

5.1.3 Jahreszeitlicher Vergleich der Staubeinträge

Für einen Vergleich der staubbringenden Winde des Winters mit jenen des Frühjahrs wird vereinfachend angenommen, dass die Windtätigkeit aus dem Sektor Süd (151°-180°) und die im jeweiligen Intervall erfassten Silikatstaubmengen (vgl. Tab. 96, Tab. 98) zueinander proportional sind. Für die Phasen der auf- und abbauenden Schneedecke werden jeweils lineare Einfachregressionen durchgeführt und die Proportionalitätsfaktoren bestimmt (Abb. 12 und 13).

Interpretation:

Die Proportionalitätsfaktoren ergeben sich als Steigungsfaktoren der beiden Geraden ($y_1 = 0.3159 x$; $y_2 = 1.3201 x$). Die Steigungsfaktoren unterscheiden sich um den <u>Faktor 4.</u> Dies zeigt, dass die Südwinde ($151^{\circ}-180^{\circ}$) im Frühjahr deutlich höhere Mengen an Silikatstaub bringen als im Winter. Durch die Annahme einer proportionalen Beziehung geht allerdings die gute Korrelation für die Frühjahrswerte verloren, wodurch der Faktor 4 mit einer Unsicherheit behaftet ist.

Eine Erklärung für die erhöhten Frühjahrsraten ist zum einen die mit dem Abbau der Schneedecke einhergehende verstärkte Deflation in den Liefergebieten. Dies betrifft die Stäube aus näherer und mittlerer Distanz. Zum anderen verstärkt sich der Ferntransport durch die

Abb. 12: Korrelation zur Beschreibung des Zusammenhangs zwischen Staubrate und Windtätigkeit aus dem Sektor Süd (151° - 180°), Schneedeckenaufbau.

Abb. 13: Korrelation zur Beschreibung des Zusammenhangs zwischen Staubrate und Windtätigkeit aus dem Sektor Süd (151º - 180º), Schneedeckenaubbau.

im Mai dokumentierte Zunahme von Saharastaubfällen als Folge erhöhter Scirocco-Tätigkeit (GLAWION 1938; Pye 1987; LITTMANN 1991).

5.1,4 Verlässlichkeit der Probennahme (Schneedeckenabbau)

Während des Schneedeckenabbaus kann es zu folgenden Kontaminationen kommen. Erstens zur Vermischung mit nicht-äolischen Materialien, wobei das Zusammenschwemmen durch Schmelzwasserfluss oder die Erosion durch Winddrift von Schnee zu nennen sind (CAILLEUX 1978; DIJKMANS und MÜCHER 1989; KOSTER und DIJKMANS 1988). Ebenso sind Störungen laminarer Sedimentationsschichten durch Redeposition möglich (MÜCHER und DE PLOEY 1977).

Zweitens kann der Oberflächenstaub bei längerer Ablationsperiode im Frühjahr das Konzentrat der bereits abgetauten Schneeschicht repräsentieren - vorausgesetzt er ist nicht schon innerhalb des Profils durch perkolierende Schmelzwässer weitertransportiert worden -(COLBECK 1977). Der erste Fall ist durch die Probenentnahme aus horizontaler Reliefposition weitgehend auszuschließen. Inwieweit der zweitgenannte Effekt durch die Vorgehensweise der Probennahme vermieden werden konnte, wird im folgenden aufgezeigt. In Abb. 14 werden die Silikatstaubraten aus trockener Deposition der Windtätigkeit aus dem Südsektor (121°- 180°) und den Raten des Schneedeckenabbaus während der jeweiligen Intervalle gegenübergestellt. Diese Abbauraten [cm/d] ergeben sich aus dem Quotienten aus Schneedeckenabnahme [cm] und Zeitdauer [d] des jeweiligen Messintervalls. Dabei ist die Verringerung der Schneedeckenhöhe in den Frühjahrsintervallen vorwiegend dem Schmelzvorgang zuzuordnen. Zusätzlich wird die Windtätigkeit aus den relevanten Sektoren (121°- 180°) pro Tag im Messintervall herangezogen.

Interpretation:

Die tägliche Abbaurate der Schneedecke [cm/d] beeinflusst die Höhe der Silikatraten auf den Schneeoberflächen mit nur schwacher Tendenz (r = +0,49). Der größte Eintrag findet in M3 (06.05.-11.05.02) bei einer Abbaurate von 6cm/d statt, während in M7 (17.06.-20.06.02) bei einer Rate von 8cm/d ca. nur die Hälfte an Staub auftritt. Damit ist der verfälschende Einfluss der Abbaurate und somit des Konzentrationseffekts auf die Probennahme als gering zu bewerten. Die hohe Verlässlichkeit der Probennahme und somit des Messprinzips hinsichtlich des Untersuchungszwecks ist gewährleistet.

Die zusätzliche Steuerung der deponierten Staubmengen durch die Akkumulationszeit wird durch Konstanthalten des Parameters Windtätigkeit aufgezeigt. Dazu werden die Messintervalle ähnlicher Windtätigkeit in drei Gruppen zusammengefasst (mittlere Windtätigkeiten: 16 m/s \cdot h; 57 m/s \cdot h; 85 m/s \cdot h) und hinsichtlich der Staubraten miteinander verglichen (Tab. 102).

Die Erhöhung der Staubmenge mit der Anzahl der Tage der Akkumulationsphase zeigt sich mit großer Deutlichkeit in Gruppe II. Innerhalb der Gruppen I und III wird im

Tab. 102: Abhängigkeit der Silikatstaubmengen [mg] von der Akkumulationszeit bei konstanten Windverhältnissen auf Schneeoberflächen.

Messir	ntervalle und Schnee	edeckenentwicklung	Silikatstaubsumme [mg]	Tage der Staubakkumulation	Windtätigkeit [m/s · h]
Grupp	e I: mittlere Windtät	igkeit 16m/s	And the second second		
M10	(10.0213.02.03)	Aufbau - Winter	2	3	16,8
M9	(01.0111.01.02)	Aufbau - Winter	9	10	24,6
M5	(17.0620.06.02)	Abbau - Frühjahr	177	3	13,4
M2	(13.0517.05.02)	Abbau - Frühjahr	61	4	10,9
Grupp	e II: mittlere Windtä	tigkeit 57m/s			
M9	(11.0512.05.02)	Abbau - Frühjahr	412	5	65,8
M8	(23.0530.05.03)	Abbau - Frühjahr	525	7	56,3
M3	(19.0531.05.03)	Abbau - Frühjahr	691	12	48,5
M4	(19.0507.06.02)	Abbau - Frühjahr	1068	19	56,4
Grupp	e III: mittlere Windtä	itigkeit 85m/s			
M8	06.1211.12.02	Aufbau - Winter	25	5	83,6
M11	09.0223.02.03	Aufbau - Winter	351	13	82,4
M6	03.0509.05.03	Abbau - Frühjahr	312	4	83,8
M7	03.0509.05.03	Abbau - Frühjahr	487	6	91,4

Tab. 103: Silikatstaubraten in Neuschneeproben in Abhängigkeit von der Großwetterlage.

Messintervall und Wetterlage			121- 150°	151- 180°	181- 210°	301- 331°	331- 360°	Eintragsrate [mg/m²/d]
M1	(2426.10.02)	Wa	0,0	24,0	24,6	49,0	13,3	3,0
M5	(31.1203.01.03)	Wz	3,2	0,5	1,4	40	0	6,7
M1	(2901.05.02)	Wz	35	7,5	4	1,5	4,5	8,4
M4	(1011.04.02)	TrM	42,7	85,5	75,3	0	0	9,3
M6	(2223.01.03)	TrW	36	144,5	40,7	13,8	20,2	91
M7	(0405.02.03)	N+NWz	3,4	0	1,7	3,7	22,5	1
M2 Wi	(0102.02.02)	SWa	0	0	0	1,3	0	1
M2 Fr	(1112.05.02)	SEa	99,3	71,2	34,5	0	0	17
M3	(0608.04.02)	HF	0	0	0	27,2	28,7	3,2

Erläuterungen:

z = zyklonal, a = antizyklonal; H = Hoch; HF = Hoch ü. Fennoskandien; M = Mitteleuropa; N, NW = Nord-, Nordwestlage; S= Südlage; SE = Südostlage, SW = Südwestlage; TrW= Trog über Westeuropa; W = Westlage

Frühjahr bei vergleichbarer Akkumulationszeit ein Vielfaches der Winterstaubmengen deponiert (z.B. M10 Winter und M5 Frühjahr).

Interpretation:

Das Staubmaterial der Schneeflächen im Frühjahr ist das Resultat äolischer Sedimentation. Sie wird durch die verstärkte Südwindtätigkeit und erhöhte Deflation in den Liefergebieten gefördert. Da in den Stäuben aus Neuschnee i.d.R. sehr geringe Staubkonzentrationen auftreten, ist der zentrale Prozess der Staubakkumulation sowohl im Winter als auch im Frühjahr die trockene Deposition. Die Staubanlieferung findet überwiegend in Perioden ohne Niederschlag statt.

5.1.5 Staubeintrag aus Neuschnee

Für die nasse Deposition durch Schneefall ist wichtig, dass die niederschlagsbringenden Winde in den mei-

sten Monaten im Jahr im langjährigen Mittel aus dem West- und Nordwestsektor (bei Stauniederschlägen bevorzugt NW, NNW) kommen.

Aufgrund der erarbeiteten Zusammenhänge zwischen Südwindtätigkeit und Staubrate stellen sich nun zwei Fragen:

- Wie wirken die S
 üdwinde an der nassen Deposition mit?
- Wie verläuft die äolische Dynamik bei nasser Deposition durch Schnee?

Es werden die Intervalle herausgegriffen, deren Staubmengen nach Neuschneefällen gewonnen wurden. Die Analyse von acht Staubproben zeigt eine Schwankung der Silikateinträge durch Neuschnee zwischen 1 mg/m²/d und 55 mg/m²/d (Mittelwert: 11,6 mg/m²/d).

Abhängigkeit von der Großwetterlage

Bei herrschender Troglage (über Mittel- oder Westeuropa) sowie bei antizyklonaler Südlage zeigen Neuschneeproben aufgrund der dominanten Südwindtätigkeit die größten Silikatmengen. Den geringsten Einfluss scheinen Nordlagen (hier zyklonale Nord- mit Nordwestlage) sowie die antizyklonale Südwestlage zu haben. Die unterstützende Wirkung der Südwindtätigkeit bei Westlagen ist zu vermuten. Bei M5 ist der Staubgehalt von 6,7 mg/m²/d möglicherweise durch die starke Windtätigkeit von 40 m/s ·h pro Tag aus dem Sektor 301-331° zu erklären (Tab. 103).

5.1.6 Ausgewählte Witterungsverläufe

Die nasse Staubdeposition hängt von der Staubmenge pro Luftvolumen ab, die vor dem Auswaschen vorhanden ist (ALLOWAY und AYRES 1996, WELLBURN 1997). Deshalb werden die Wechsel von Trocken- und Niederschlagsperioden sowie die Südwindverhältnisse einige Tage vor der Probennahme an ausgewählten Beispielen betrachtet.

Beispiel 1: Westlage, zyklonal (28.01.-31.01.02), gefolgt von Südwestlage, zyklonal (ab 01.02.02), Reiteralpe. Die Phase (28.01. bis 02.02.02) ist durch tägliche, geringe Niederschlagsmengen (Mittelwert: 1 mm/d) gekennzeichnet. Windtätigkeit aus den Sektoren W und N prägt die Westlage Ende Januar. Erst am Tag der Probennahme, also nach dem Neuschneezuwachs, treten mit Beginn der Südwestlage Winde aus südlichen Richtungen auf. Die Silikatmenge ist mit 1mg/m² minimal. Die starke Westwindtätigkeit hat hier keinen Einfluss auf die Deposition.

Beispiel 2: Nordlage und Nordwestlage, zyklonal (01.-05.02.03), Reiteralpe. Auch hier bestimmen tägliche, jedoch hohe Niederschlagsmengen (Mittel: 23 mm/d) die Witterung. Der relevante Niederschlag vor dem Tag der Probennahme (04.05.03) beträgt 28 mm. Die Südwindtätigkeit ist gering. Ebenso zeichnen sich die Stunden vor der Probennahme durch Neuschneezuwachs aus.

Südwind am Tage des Niederschlags scheint dann keinen fördernden Einfluss auf die Staubmenge zu haben, wenn eine Niederschlagsphase mit hohen Tagesmengen vorausgeht. Dadurch ist möglicher Staub bereits in tieferen Schneeschichten akkumuliert und wird in der Probe nicht mehr erfasst.

Beispiel 3: Westlage, antizyklonal (17.01.-20.01.03) gefolgt von der Troglage über Westeuropa (ab 21.01.03), Zugspitzplatt. Dieses Beispiel zeigt eine deutliche Zweiteilung der Wetterlage. Die vorausgegangene antizyklonale Westlage ist niederschlagsfrei (17.01.-20.01.03), während am Übergang zur Troglage bis zur Probennahme (23.01.03) täglicher Niederschlag (Mittelwert: 8mm/d) mit kräftiger Südwindtätigkeit registriert ist. Das Staubmaximum von 55 mg/m² im Neuschnee tritt am 23.01.03 auf (Tab. 104).

In Trockenperioden mit mäßiger, aber täglicher Südwindtätigkeit befinden sich Stäube aus südlichen Liefergebieten in der Atmosphäre. Sie können entweder trocken deponiert oder durch folgenden Schneefall abgelagert werden. Eine Verstärkung des wash-out Effekts mit dem Resultat hoher Staubsummen tritt bei kräftiger Südwindtätigkeit an Niederschlagstagen auf.

Beispiel 4: Südostlage, antizyklonal (07.05.-11.05.02) gefolgt von einer Südwestlage, zyklonal (ab 12.05.02), Karwendelgrube. Mit dieser Wetterlage geht kräftige Materiallieferung mit Südwinden einher. Im Verlaufe vom 11.05.02 setzen Niederschläge ein. Der in der Atmosphäre verbliebene Staub wird am 11.05.02 nass deponiert. Am 12.05.02 werden 17 mg/m² Silikatmaterial in der Schneeprobe registriert (Tab. 105).

Aus den vier Beispielen und den Messdaten werden folgende Zusammenhänge abgeleitet:

- Es gibt keinen eindeutigen Zusammenhang zwischen der Niederschlagsmenge und den Staubraten im Neuschnee. Einige Werte zeigen jedoch, dass bei Witterungsverläufen mit anhaltenden Schneefällen (Neuschneezuwachs von > 1 cm pro Tag), oft nur sehr geringe Mineralanteile im Neuschnee auftreten. Das zeigt eine Art "Verdünnungseffekt", da der wash-out des Materials bereits stattgefunden hat und der Staub in tieferen Horizonten der Neuschneeauflage angereichert ist.

Tab.	104: Niederschlag und Windve	erhältnisse zwischen 1	7.01.03 und 23.0	1.03, Zugspitzplatt.
------	------------------------------	------------------------	------------------	----------------------

Messintervall	Nordsektor (301-30°)	Ostsektor (31-120°)	121- 150°	151- 180°	181- 210°	Westsektor (211-300°)	NS [mm]
Westlage ant	izyklonal 17.	01. bis 20.0	1.2003			1.1	
17.01.2003	5,9	16,3	80,1	9,8	39,2	0	0
18.01.2003	28,4	15,8	1,6	0	6,3	25,2	0
19.01.2003	48,5	0	12,5	8,1	0	94,4	0
20.01.2003	48,5	0	12,5	8,1	0	94,4	0
Troglage übe	r Westeurop	a ab dem 2	1.01. 2003	3			
21.01.2003	0,0	0	26,4	141,7	40,7	35,3	3,7
22.01.2003	34,0	0,7	9,6	2,8	0	140,3	9,6
23.01.2003 (0h bis 9h)	Probennahr	ne: Staubko	nzentratio	n 55mg/m ²	2		

Tab. 105: Niederschlag und Windverhältnisse zwischen 06.05.02 und 12.05.02, Westliche Karwendelgrube.

Messintervall	Nordsektor	Ostsektor	121-	151-	181-	Westsektor	NS [mm]
	(301-30°)	(31-120°)	150°	180°	210°	(211-300°)	
Südostlage, a	ntizyklonal (0	611.05.02) gefolgt v	on Südwe	estlage, zy	klonal ab de	m 12.05.02
06.05.2002	0,0	0	114,1	48,1	0	0	0,1
07.05.2002	0,0	0	81,8	79,3	11,7	10,4	0
08.05.2002	0,0	0	258,6	0	0	0	0
09.05.2002	2,5	1	50,8	58,3	1,4	8,1	0
10.05.2002	0,0	0	50	54,1	29,6	4,7	0
11.05.2002	0,0	2	49,3	13,8	4,9	22,5	14,8
12.05.2002	1,5	0	11,4	19,6	8,5	51	0,8
12.05.2002	Probennahn	ne: Staubko	onzentratio	n 17mg/m	2		

Tab. 106: Staubeintrag durch Regen in den Sommern 2002 und 2003.

Untersuchungsgebiet Messfeld	Sommer	Silikatstaub [µg/cm²/d]	Humusstaub [µg/cm²/d]	Karbonatstaub [µg/cm²/d]	Gesamtinput [µg/cm²/d]
Zunnaitentatt	2002	10,1	9,5	0,7	20,5
zugspitzplatt	2003	6,2	4,1	0,1	10,5
Westliebs Kennendeleinube	2002	4,4	4,6	0,3	9,2
westliche Karwendelgrube	2003	8,8	3,7	0,2	12,6
Deiteralas	2002	4,3	4,0	0,1	8,5
Keneralpe	2003	4,1	1,9	0,1	6,1

- Allerdings gibt es auch Beispiele, in denen trotz langanhaltender Schneefälle hohe Staubkonzentrationen in der Neuschneeprobe auftreten. Dies ist häufig der Fall, wenn den Niederschlagstagen mit Südwindtätigkeit eine Niederschlagsphase mit Nord- und Westwindtätigkeit vorausgeht. Der Staubgehalt im Neuschnee wird vorrangig von der Südwindtätigkeit an den Niederschlagstagen gesteuert. Eine Korrelation der Staubraten aus Neuschnee mit den Winden aus den Sektoren 121°-180° ergibt einen positiven Zusammenhang (r = +0,76).
- Die Abhängigkeit von der Südwindtätigkeit erklärt sich auch aus der Tatsache, dass die niederschlagsbringenden Windrichtungen (Sektoren NW, NNW) auf die Deposition von Mineralstäuben im Winter keinen Einfluss haben. Entsprechend treten in Phasen mit hoher Nord- und Westwindtätigkeit sowohl bei hohen als auch bei geringen Tagesniederschlägen minimale Staubwerte auf.
- Treten im Witterungsverlauf Trockenphasen auf, dann sorgt bereits eine mäßige Südwindtätigkeit an diesen Tagen für erhöhte Staubkonzentrationen im folgenden Neuschneezuwachs, wenn dieser gering bleibt. Entscheidend für die Aufwirbelung und den Transport von Stäuben sind also Trockenphasen mit Südwinden vor den Niederschlagsphasen. Der Großteil der Stäube wird aufgeweht, ein kleinerer Teil wird durch Schneekristalle mitgerissen.

Die vorliegenden Ergebnisse korrelieren mit der Schneebedeckung in den Liefergebiete in mittlerer Entfernung (Zentralalpen). Sie sind mit den identifizierten Mineraleigenschaften ein weiterer Beleg für den Ferntransport der Silikatstäube im Winter.

5.2 Ergebnisse zur Staubquantifizierung im Regenniederschlag

Die Einzelmessungen aus den Staubfangkästen sind Datengrundlage. Mit dem Flächenbezug (Sedimentkasten: 646 cm²) ergeben sich aus den Tagesmengen [mg/d] pro Staubfangkasten die Eintragsraten [µg/cm²/d]. Neben den Silikateinträgen (S) wird z.T. auch der Gesamtstaub (G) herangezogen. Bei Probenverlusten werden auch die Werte der Messeimer (642 cm²) verwendet.

5.2.1 Quantifizierung des Staubeintrags

Die in einer Saison in allen Staubfangkästen eines Gebietes erfassten Staubmassenwerte [mg] werden addiert und durch die Anzahl der Staubfangkästen geteilt. Diese Mittelwerte werden in Eintragsraten umgerechnet (Tab. 106).

Der Sommer 2003 ist in allen drei Gebieten durch eine deutliche Abnahme des Humusanteils gekennzeichnet. Die Humus- und Silikatanteile sind anders als das Staubmaterial im Winter von vergleichbarer Größenordnung. Auffällig ist der geringe Karbonatgehalt am Gesamtstaub. Die Eintragsraten werden pro Intervall als Mittelwerte über die Staubfangkästen für die Meßsommer 2002 und 2003 dargestellt, ebenso die ermittelten Gesamteinträge pro Staubfangkasten (Catena Zugspitzplatt) (Abb. 15, 16).

Der modifizierende Einfluss des Reliefs (Vegetation, Höhenlage, Bedeckungsgrad) wird in den unterschiedlichen Beträgen der Einzelwerte deutlich. Sehr gute

Abb. 15: Zeitlicher Verlauf der Staubeinträge in den Sommern 2002 und 2003 (Catena Zugspitzplatt).

Übereinstimmung zeigen die Staubfangkästen in der Karwendelgrube und zwar besonders jene in Lee-Situation (Abb. 17).

5.2.2. Abhängigkeit von Klimaparametern

Der Sommer 2003 war extrem heiß und trocken ("Jahrhundertsommer") und es stellt sich die Frage, ob die Faktoren Wind und Niederschlag auch im Sommer staubrelevant sind. Für den Vergleich wird für beide Sommer das Zeitintervall vom 03. Juli bis 26. August (54 Tage) herausgegriffen. In diesem Vergleichsintervall sind die Staubeinträge in allen Gebieten im Jahr 2003 um die Hälfte, auf der Reiteralpe sogar auf etwa ein Drittel reduziert. Die Gegenüberstellung der herrschenden Niederschlags- und Windverhältnisse zeigt eine für beide Jahre vergleichbar große Gesamtwindtätigkeit. Daher kann

Abb. 17: Zeitlicher Verlauf der Staubmengen in Leelagen (2003, Westliche Karwendelgrube).

sie in diesem Falle nicht die Ursache für die Schwankungen zwischen 2002 und 2003 sein. Als mögliche Steuerungsfaktoren sind zum einen die Südwinde, zum anderen die ebenfalls stark reduzierten Niederschläge zu betrachten (Tab. 107, 108). Richtungssektoren dargestellt (Abb. 18). Die Regressionsanalysen ergeben einen positiven Zusammenhang von Windtätigkeit und Silikateintrag für die Gebiete Zugspitzplatt (r = +0,66) und Karwendelgrube (r = +0,62). Kein Zusammenhang besteht bei den Werten für die Reiteralpe. Dies drückt sich beim Zusammenfassen aller Werte in der Berechnung in einem geringeren Koeffizienten (r = +0,53) aus. Als nächstes wird die Abhängigkeit des Staubeintrages von den Windrichtungssektoren

Im folgenden werden für alle Intervalle in den drei Gebieten die Windtätigkeiten zunächst unabhängig von den

A) Windtätigkeit

Abb. 18: Windtätigkeit und Silikatstaubmenge (Sommer 2002, 2003).

Tab. 107: Staubeinträge de	Sommer 2002 und 2003	(Normintervall: 03. Juli bis 26.	August, 54d).
----------------------------	----------------------	----------------------------------	---------------

Untersuchungsgebiet Messfeld	Sommer	Silikatstaub [µg/cm²/d]	Humusstaub [µg/cm²/d]	Karbonatstaub [µg/cm²/d]	Gesamtinput [µg/cm²/d]
Zugenitunlett	2002	12,4	12,0	1	26,1
Zugspitzplatt	2003	6,9	4,9	0,1	11,9
Westlinks Konuendelawika	2002	8,9	7,5	0,03	16,4
westliche Karwendelgrube	2003	5,7	4,0	0,10	9,7
Baitaralaa	2002	10,7	6,5	0,03	17,2
Kenteralpe	2003	3,9	2,0	0,2	5,9

Tab. 108: Windtätigkeit und Niederschlag der Sommer 2002 und 2003 (Normintervall: 03. Juli bis 26. August, 54d).

Meßsommer	Windtätigkeit [m/s	s · h]	Niederschlag	Mittlerer Silikateintrag		
	Alle Richtungen	121-150°	151-180°	181-210°	[mm]	[µg/d/cm ²]
2002 ZP 1)	7478	1272	1123	488	389	12,4
2003 ZP 1)	6311	298	284	202	172	6,9
Quotient 02/03	1,2	4,3	3,9	2,4	2,3	1,8
2002 KG1)	7478	1272	1123	488	389	8,9
2003 KG 1)	6311	298	284	202	172	5,7
Quotient 02/03	1,2	4,3	3,9	2,4	2,3	1,6
2002 RA 2)	3245	262	173	147	389	10,7
2003 RA 2)	2812	75	48	63	172	3,9
Quotient 02/03	1,1	3,5	3,6	2,3	2,3	2,7

2) Wind 2002, 2003: Station Watzmannhaus (1801m), DWD München + NP Berchtesgaden

Tab. 109: Korrelationskoeffizienten r zur Beschreibung des Zusammenhangs zwischen Staubeintrag und Windtätigkeit pro Richtungssektor.

-	Nordsektor		Ostsek	Ostsektor		Südsektor			Westsektor			
	301- 331°	331- 360°	1- 30°	31- 60°	61- 90°	91- 120°	121- 150°	151- 180°	181- 210°	211- 240°	241- 270°	271- 300°
r =	+0,35	÷0,44	+0,26	+0,11	+0,13	+0,14	+0,40	+0,35	0,32	+0,29	+0,48	+0,48

(30°-Sektoren) geprüft (Tab. 109). Die rechnerische Analyse ergibt generell einen positiven, aber für alle 30°-Sektoren schwachen Zusammenhang. Es zeigt sich allerdings eine Präferenz des Nord- und Westsektors, d.h. der niederschlagsbringenden Winde. Im Gegensatz zum Winter beeinflusst die Windtätigkeit aus dem Südsektor (121°-150°) die Höhe der Silikateinträge im Messzeitraum nur schwach.

B) Niederschlag

Der Vergleich mit der Niederschlagsmenge (Methode: Sammelkanister) ergibt folgende Kurvenverläufe (Abb. 19).

Wie die Silikatrate berechnet sich auch die Niederschlagsrate [mm/d] aus der festgestellten Menge am Ende des Intervalls dividiert durch die Anzahl der Tage d. In der Regel sind die Kurvenverläufe zueinander synchron, was die Steuerung durch den Niederschlag dokumentiert. Die durchgeführte lineare Regressionsanalyse unterstützt das Ergebnis (y = 0,731 x + 2,021; R² = 0,39, r = +0,63, n = 32) in Abb. 19. Keiner der Windsektoren zeichnet sich in der Korrelation mit dem Silikateintrag aus, da im Sommer neben den südlichen Liefergebieten (z.B. Sahara) auch andere Gebiete (z.B. Ost- und Westalpen) Stäube liefern können. Zudem erfolgt nasse Deposition bei Wetterlagen mit Winden aus dem NW- und W-Sektor.

Insgesamt zeigt sich eine Abhängigkeit der Staubeinträge vom Regenniederschlag, die beim Humusanteil am stärksten zum Ausdruck kommt (y = 2.7504x + 39.012; $R^2 = 0,5041$; r = +0,71, n = 32) und den *wash-out* Effekt dokumentiert.

5.3 Ergebnisse zum Einfluss von Relief und Vegetation

Anhand der Staubeinträge (Winter, Sommer) wird versucht, die Einflüsse von Reliefparametern in erster Näherung anzugehen. Das Grundproblem liegt dabei in der nötigen und realistisch möglichen Messnetzdichte. Dies hat Auswirkungen auf die statistische Aussagekraft

Abb. 19: Niederschlag und Silikateintrag pro Intervall (Sommer 2002 und 2003).

der Geländedaten, die deshalb als Trends zu verstehen sind. Die Reliefsituationen sind repräsentativ für den betrachteten Parameter (z.B. Luv- /Lee-Effekte). Die Quantifizierung findet an drei Standorten in der Westlichen Karwendelgrube statt, die im Winter gut zugänglich sind (Anhang 10.1).

- SP1 Dolinenmulde (2200 m)
- SP2 Kirchlwiese SE (2250 m), Luvhang
- SP3 Linderhang NNE (2300 m), Leehang

5.3.1 Relief und Luv-Lee-Effekte

Insgesamt liegen Ergebnisse aus sieben Probennahmen während des Winters vor. Die Testfläche am Leehang (SP 3) zeigt prozentual die größte Staubmenge, gefolgt von jener am Luvhang (SP 2) in fünf von sieben Probennahmen (Tab. 110). Auch die reliefabhängige Auswertung der Eintragsraten aus den Regenniederschlägen (Kasten 1 bis 4, neun Intervalle im Sommer 2003) zeigt eine deutliche Bevorzugung der Lee-Lagen, besonders entlang von konkaven Unterhängen (10°; Standort SP3, Kasten 2). Am steileren konkaven Oberhang (Standort SP3, Kasten 3) wird mehr deponiert als in konvex-konkaver Situation am Mittelhang (Standort SP3, Kasten 4). Vergleicht man zwei Standorte mit identischen Neigungsparametern (KG 4_Lee mit KG 1_Luv), zeigt sich wieder die Präferenz der Lee-Lage.

Interpretation:

Ursache dieser Depositionsmuster ist die Winddynamik in der Großdoline. Die Südwinde prallen zuerst im Luv der Kirchlwiese auf, wobei sie bereits einen Teil der Staubfracht ablagern. Im weiteren Verlauf lenkt das Gipfelmassiv der Linderspitze die Winde ab. Nach dem Überstreichen des Grates erfolgt im Lee eine Reduzierung der Windgeschwindigkeit. Der Großteil des Flugstaubs wird bevorzugt entlang eines Geländeknicks auf den N- und NE-exponierten Ober- bis Unterhangbereichen deponiert. Nahe des Dolinenbodens gelangt ein geringer Teil der Staubfracht trocken auf die Schneeoberfläche.

5.3.2 Effekte auf Boden und Vegetation durch Staubeintrag

Die Staubdynamik spiegelt sich in der Bodenentwicklung sowie den räumlichen Mustern von Boden- und Vegetationstypen wider (Tab. 111).

Standort Doline SP1:

Die Doline hat den geringsten prozentualen Anteil am Gesamtstaub (bezogen auf die Standorte SP1, SP2, SP3). Entsprechend gibt es dort Rohböden verzahnt mit initialen Polsterrendzinen, die z.T. mit Vertretern des kalkliebenden Gänsekresse-Bodens (*Arabidetum caeruleae*) besetzt sind. Diese zeigen lange Schneebedeckung (7-8 Monate) an. Am Unterhang treten im Ruhschutt initiale und typische Polsterrendzinen unter Polsterseggenrasen (*Carlcetum firmae*) auf. Die Schmelzwässer verlagern den Staub in die Doline, wo er in den Untergrund gespült wird. Die hohe Wasserzügigkeit spiegelt das nur mäßig ausgebildete *Arabidetum caeruleae* wider (ELLENBERG 1996; REISIGL und KELLER 1987; SFAZER 1924).

Tab. 110: Prozentuale Verteilung [%] der Staubmengen in Abhängigkeit vom Relief.

		Schneed	leckenaufbau	Contractory of the second	Sc	hneedeckena	bbau
Staubkasten	26.10.02	11.12.02	03.01.03	13.02.03	17.05.02	07.05.03	30.05.03
Doline, SP1	25	34	10	17	4	25	15
Luv, SP2	34	29	25	33	36	11	40
Lee, SP3	41	37	65	50	60	64	45
Die prozentuale	Darstellung	der Silikats	taubmengen [n	ng/m²] basie	rt auf folgender	Berechnung: S	Summe Staub-

gehalt aus den Testflächen (SP1+SP2+SP3) pro Messtermin entspricht 100%.

Tab. 111: Staubeintrag und Bodenentwicklung, Westliche Karwendelgrube.

Mittlere Solummächtigkeit [cm] der dominanten B dentypen am Standort 1)	Prozentualer Anteil am Gesamtstaub [mg/m ²] ²⁾		
Protorendzina Aih/Cv	8	19%	
Polsterrendzina Oh/Cv 20			
Flachgründige Lößbraunerde über verbraunter Rendzina Ah/Bv+II Cv/Cn	52	30%	
Mittelgründige Lößbraunerde (Ah)/Bv/IICv+Cn	52%		
	Mittlere Solummächtigkeit [cm] der dominanten B dentypen am Standort ¹⁾ Protorendzina Aih/Cv Polsterrendzina Oh/Cv Flachgründige Lößbraunerde über verbraunter Rendzina Ah/Bv+II Cv/Cn Mittelgründige Lößbraunerde (Ah)/Bv/IICv+Cn	Mittlere. Solummächtigkeit [cm] der dominanten Bo- dentypen am Standort 1) Protorendzina Aih/Cv 8 Polsterrendzina Oh/Cv 20 Flachgründige Lößbraunerde über verbraunter Rendzina Ah/Bv+II Cv/Cn 52 Mittelgründige Lößbraunerde (Ah)/Bv/IICv+Cn 80	

Mittelwert: Solummächtigkeit, n umfasst 15 Bohrstocktiefen pro Bodentyp

 Gesamtstaubmenge [mg/m²] von Schneeoberflächen in der Karwendelgrube als Summe aus den Staubmengen von den Testflächen SP1, SP2, SP3 pro Messtermin der Sommer 2002 und 2003. Daraus errechnet sich ein prozentualer, mittlerer Staubeintrag.

Standort Luvhang SP2:

Am Standort SP2 wird ein Anteil von 30% an der mittleren Gesamtstaubdeposition verzeichnet. Flachgründige Lössbraunerden (Min.: 45 cm, Max.: 71 cm, Mittel: 52 cm) besetzen den konkaven Unterhang. Auf den glimmerreichen äolischen Hangsedimenten dominiert Seslerio-Caricetum sempervirentis. Diese thermo- und calcophile Rasengesellschaft bevorzugt feinerdereiche Südlagen, die im Winter ausreichend Schneeschutz bieten (ELLENBERG 1996; FRANZ 1979). Die pH-Werte der Bv-Horizonte über Muschelkalk liegen im Bereich der Kirchlwiese allerdings im mittel sauren Bereich (pH: 5,1 bis 5,3). Sie steigen am Übergang zum noch durchwurzelten IICv-Horizont auf 5,8 bis 5,9 an. Ähnliche Ergebnisse liegen aus den Schweizer Alpen vor, die einen größeren Toleranzbereich von Seslerion (gutes Gedeihen noch bei pH 5,5) zeigen (GIGON 1971).

Damit steht der Kalkrasen nicht im Gegensatz zum äolischen Substrat. Im Gegenteil, typische Säurezeiger wie das Borstgras (*Nardus stricta*) oder die Rasen-Schmiele (*Deschampsia cespitosa*), die zum *Nardetum* überleiten, beschreiben die z.T. "versauerten Blaugras-Horstseggen-Halden" (SAITNER 1989, S. 90) in der Westlichen Karwendelgrube. Die horstbildenden Gräser (Blaugras, Horstsegge, Blauschwingel) kämmen den Staub aus und ihr weitverzweigtes Wurzelwerk fixiert das bodenbildende Substrat.

Standort Leehang SP3:

Der größte Anteil am Gesamteintrag in der Karwendelgrube ist an den Leehängen von SP3 (Mittel: 52%) registriert. Mächtige Lössbraunerden (Min.: 64 cm; Max.: 90 cm), bewachsen mit dem <u>Silikatkrautweide-Schneeboden</u> (*Salicetum herbaceae*) "als Charakter-Gesellschaft der Silikatischen Zentralalpen" (ELLENBERG 1996, S. 613), herrschen vor. *Salicetum herbaceae* ist ökologischer Zeiger für saure Bodenverhältnisse und lange Schneebedeckung. Diese dokumentiert sich im Lee in einer ausgeprägten Hangwechte, die von der Nördl. Linderspitze dem Leehang in die Doline folgt und erst im Verlauf des Juli völlig abtaut.

Innerhalb der Großdoline treten am Hangbereich (SE, ESE) zwischen Linderspitze und Bergstation äolische Mullrendzinen und geringmächtige Braunerden auf. Dort nimmt die Hanghöhe ab, sodass eine weitere Öffnung der Dolinenumrahmung nach W besteht. Über diese Pforte können die von der Linderspitze abgelenkten Südwinde in die Doline gelangen.

Dieses aerodynamisch induzierte Verteilungsmuster der Stäube und Lössbraunerden spiegelt sich in der Vegetation. Windharte Spalierpflanzen und Rasen sowie Vertreter der Karbonat-Alpen-Windecken und Sauerboden-Windheiden treten auf. Caricetum fimae in Kombination mit Silberwurzteppichen (Dryas octopetala) besetzt die windexponierten, trockenen Standorte. Es tritt im Verband mit Pflanzen (z.B. Antennaria carpatica) des kalkliebenden Nacktrietrasens (Elynetem alpinum) auf. Zeigerpflanzen für silikatisches Substrat sind auf den verbraunten Rendzinen z.B. Loiseleurea procumbens als Vertreter des Gamsheide-Teppichs (Loiseleurietum). Diese Pflanze gehört den Sauerboden-Windheiden an und besetzt "windexponierte, aber weniger geneigte Reliefeinheiten" (ELLENBERG 1996, S. 585; SAINTNER 1989; SAINTNER LIND PFANDENHAUER 1989).

5.4 Zusammenfassung: Äolische Dynamik

5.4.1 Die Staubquantifizierung im Winter

Die mittleren Eintragsraten während der Phase des Schneedeckenaufbaus betragen auf Schneeoberflächen **12 mg/m²/d** (Schwankung: 0,7 bis 55 mg/m²/d). Dabei treten die geringsten Raten im Winter direkt nach Neuschneefällen (nasse Deposition) auf.

Im Frühjahr ist der mittlere Silikateintrag von **64 mg/m²/d** (Schwankung: 8 bis 135 mg/m²/d) rund 5-mal höher. Es besteht eine deutliche Abhängigkeit der Staubdynamik von den Witterungsverläufen und Großwetterlagen (Tab. 112).

A) Äolische Dynamik

Der zentrale Prozess ist im Winter und Frühjahr die trockene Deposition, wobei der Staubtransport bevorzugt in niederschlagsfreien Perioden stattfindet.

Die rötlichbraunen Mineralstäube der winterlichen Schneeflächen belegen Ferntransport aus der Sahara. Auch die deutlich verfärbten Schneeflächen im Frühjahr sind vorwiegend das Resultat verstärkter, äolischer Sedimentation. Sie wird durch erhöhte Südwindtätigkeit (Sektor: 151-180°) und zusätzliche Deflation aus den bereits schneefreien Räumen der alpinen Liefergebiete (z.B. Zentralalpen) gefördert.

B) Aolische Deposition in Neuschneehorizonten

Nach langanhaltenden Schneefällen (Neuschneezuwachs von > 1 cm pro Tag), ist die Staubkonzentration im Probenhorizont (0-1 cm) gering. Es besteht bei den Staubinhalten aus nasser Deposition eine Abhängigkeit von der Südwindtätigkeit am Niederschlagstag. Dies trifft besonders zu, wenn eine Niederschlagsphase mit Nord- und Westwinden vorausgegangen ist.

In Perioden mit hoher Nord- und Westwindtätigkeit treten sowohl bei hohen als auch geringen Tagesniederschlägen minimale Staubwerte auf, da im Winter keine potentiellen Liefergebiete in dieser Windrichtung aktiv sind. Gehen niederschlagsfreie Perioden mit Südwind voraus, dann bewirkt schon eine mäßige Südwindtätigkeit während des Niederschlags erhöhte Staubmengen, vorausgesetzt der folgende Neuschneezuwachs bleibt gering.

5.4.2 Die Staubquantifizierung im Sommer

Es liegen folgende Silikateinträge (µg/d/cm²) bezogen auf die jeweiligen Messintervalle vor:

- Sommer 2002: Zugspitzplatt (10),
 Westl. Karwendelgrube (4), Reiteralpe (4)
- Sommer 2003: Zugspitzplatt (6),

Westl. Karwendelgrube (9), Reiteralpe (4)

A) Aolische Dynamik

Es besteht eine schwache positive Korrelation der Silikateinträge mit den niederschlagsbringenden Windrichtungen aus dem NW- und W-Sektor. Damit sind im Sommer zusätzliche Liefergebiete (z.B. die kristallinen Westalpen) aktiv. In beiden Sommern zeigt sich ab September der Trend einer Abnahme der mittleren Staubeinträge. Zu dieser Zeit beginnt in den Deflationsgebieten der periglazialen Höhenstufe der Zentralalpen bereits der Schneedeckenaufbau und so die Bindung des erosionsfähigen Staubmaterials. Die Höhe des Staubinputs hängt deutlich von der Niederschlagsmenge ab. Nach längeren Trockenphasen wird der Staub ausgewaschen. Dabei stellt sich eine Art "Verdünnungseffekt" im Verlauf des Niederschlagsereignisses ein. Trockene Witterungsphasen führen in den Staubfangkästen zu Staubinhalten im Bereich der Nachweisgrenze.

B) Einflüsse von Relief, Vegetation und Boden

Bevorzugte Ablagerungsräume sind konkave Hanglagen in Lee-Situation, wobei an steileren konkaven Oberhangbereichen mehr deponiert wird als in konvex-konkaven Lagen am Mittelhang. Die zweitgrößte Staubmenge wird in vergleichbaren Geländesituationen am Luv-Hang ermittelt. Bei identischen Hangparametern zeigt sich immer eine Bevorzugung der Lee-Lagen. Die alpinen Vegetationsgesellschaften kämmen Staub in Bodennähe aus und verändern in Reaktion auf die sauren Fremdsubstrate ihre Artenzusammensetzung.

5.4.3 Mögliche Liefergebiete

Gesteinsserien der <u>alpinen Liefergebiete</u> werden durch die Schwermineralspektren mit Hilfe von metamorphen Zeigern (Chlorit, Disthen, Epidot, Granat, Rutil, Stauro-

Tab. 112: Staubdeposition auf Schneeoberflächen in Abhängigkeit von den Großwetterlagen.

	Hemmende Wirkung au	If die äolische Deposition ->Niedrige Staubraten
Sch	nneedeckenaufbau "Winter"	Schneedeckenabbau "Frühjahr"
	Südwestlage antizyklonal Nord- u. Nordostlagen Hochdrucklagen Mitteleuropa und Fen- noskandien Hochdruckbrücken	 Westlage zyklonal Südwestlagen
	Fördernde Wirkung a	uf die äolische Deposition →Hohe Staubraten
	Troglagen über West- und Mitteleuropa Südlage antizyklonal	 Südlagen und Südostlagen Troglagen ü. West- und Mitteleuropa Südwestlage mit Übergang zur Hochdruckbrücke/Mitteleuropa

lith, Turmalin, Zirkon) und magmatischen Indikatoren (Apatit, Glimmer, Hornblende, Quarz, Zirkon) beschrieben. <u>Saharastäube</u> fallen zusätzlich durch Hämatit, Gips, gerundete Quarzkörner und Feldspäte sowie Diatomeenreste auf. Folgende Liefergebiete ergeben sich:

- Wüstengebiete

der Sahara (Ferntransport > 500 km)

Kristalline
 Zentralalpen (Mittlere Distanz > 50 km und < 500 km)
 Benachbarte

Umgebung (Nahtransport < 50 km)

A) Wetterstein- und Karwendelgebirge

Als zentralalpine Liefergebiete fungieren die Phyllit-Zone und das Ötztal-Kristallin der Stubaier und Ötztaler Alpen südlich des Innntals. Bei mechanischer Verwitterung der feinkörnigen Quarzphyllit- und Glimmerschiefer-Serien entstehen Korngrößen der Schluff-Fraktion (63 µm bis 2 µm). Die Granodiorite und Granitgneise verwittern bevorzugt zu sandigem Substrat (LATRIDOU 1988). Weitere Quellen sind die Schieferhülle und die Zentralgneis-Serien des Tauernfensters (Penninikum). Als Leitkanäle der Südwinde fungieren die Täler von Inn, Isar und Sill.

Schließlich liefert das Neokom der Jungschichtenzone am Südrand des Wettersteingebirges Tonminerale und sedimentären Quarz. Die äolische Zufuhr von Sanden aus der näheren Umgebung des Kalkalpins (z.B. Raibler Schichten) wird für die Karwendelgrube postuliert.

B) Reiteralpe:

Zentralalpine Stäube stammen aufgrund der bedeutenderen Ostwindkomponente (ESE, SE) vorwiegend aus der oberostalpinen Grauwackenzone (Ennstaler und Pinzgauer Phyllit, Wildschönauer Schiefer) mit Kieselund Phyllitschiefern sowie Sandsteinen (Quarz-, Glimmer- und Tonminerale). Ebenso wird Verwitterungsmaterial aus den Hohen Tauern des ostalpinen Altkristallins ausgeweht (besonders Hornblendegneise, Hornblendegarbenschiefer sowie Amphibolite). Das erklärt den Reichtum an frischer Hornblende auf der Reiteralpe. Als Windkanäle fungieren die Täler des Pinzgau und der Salzach und Saalach. Die festgestellten "molasseartigen Schwermineralspektren" in den Böden deuten auch auf äolisch transportfähige Verwitterungsreste der tertiären Augensteinlandschaft hin.

C) Äolische Dynamik

In der schneefreien Zeit sind die Liefergebiete der Zentralalpen relevant, während im Winter der Ferntransport dominiert (z.B. gerundete Quarze, Zirkone, Diatomeen). Die verstärkte Humuslieferung im Sommer findet aufgrund der identifizierten Pflanzeninhalte aus der Umgebung statt. Die prinzipiell mögliche Staublieferung mit Niederschlägen aus nördlichen Gebieten (z.B. kristalline Mittelgebirge, Molassevorland) ist heute als sehr gering anzunehmen. Gründe sind die Schneebedeckung der Gebiete im Winter, die großflächige Vegetationsbedeckung im Sommer und die anthropogene Flächenversiegelung. Anders im Spätglazial, wo aufgrund der Vegetationsarmut eine Lössauswehung auch aus dem Alpenvorland (Molassebecken) und Mittelgebirgsraum möglich war.

5.5 Berechnung von Sedimentationsraten

Die berechneten Sedimentationsraten [µm/a] verknüpfen die Messwerte aus der Staubquantifizierung mit den Ergebnissen der Bodengenese.

5.5.1 Berechnungsgrundlagen

A) Materialdichten

- 2,65 g/cm³ kompakte reine Kalke (wk, mk, dk, go)
- 2,10 g/cm³ tonhaltige Brekzien (rh, dk)
- 1,50 g/cm³ lehmiges Residuum (RAPP 1984)

- 1,30 g/cm³ Flugstaub (tonmineralreich;

MATTSSON und NIHLEN 1996)

B) Postglazialer Kalkabtrag

Zur Abschätzung der holozänen Bodenbildung benötigt man die potentiellen Solummächtigkeiten aus der Kalksteinverwitterung. Berechnungsgrundlage sind die Residualgehalte der Ausgangsgesteine sowie der <u>postglaziale Kalkabtrag</u> [cm/10 ka].

Der Wert von 34 cm/10 ka (alpine Stufe 2000 m bis 2350 m) für das Zugspitzplatt basiert auf Kalkabtragsraten, die in Abhängigkeit von Bodentyp, Flächenbedeckung und Höhenstufe ermittelt wurden (Methode: rock tablets, Lösungsfähigkeit von Bodensickerwässern, Hüttl 1999). Trotz der geringeren Jahresniederschläge auf der Reiteralpe, die den Kalkabtrag mindern, wird der Wert von 34 cm/10 ka auch hier verwendet. Die mächtigen Humusauflagen rechtfertigen dieses Vorgehen, da sie noch höhere Lösungspotentiale haben als der hier verwendete mittlere Kalkabtrag (BAUER 1969, HÜTTL 1999, SCHLOTT 1997). Für das periglaziale Verwitterungsmilieu der Westlichen Karwendelgrube gibt SCHLOTT (1997) einen Abtrag von 16 cm pro 10.000 Jahre an. Die Rechenwerte (reine Kalksteine) der potentiellen Solumbildung liegen mit 1,3 cm bis 4 cm/10.000 Jahren in ähnlicher Größenordnung wie die Messwerte. Jene für die Bodenstandorte auf unreinen Kalken und Brekzien liegen mit 4 cm und 6,7 cm/10.000 Jahren deutlich niedriger als die Geländedaten (Tab. 113).

C) Zeiträume

Die potentiellen Solummächtigkeiten aus der Flugstaubsedimentation werden aufgrund der jahreszeitlich differenzierten Silikatraten auf einen Winter- und Sommereintrag bezogen. Beide ergeben zusammen die jährliche Sedimentationsrate [µm/a].

Zeitlich sind die Sedimentationsraten auf einen Normwinter und Normsommer bezogen, deren Längen sich an der Schneedeckenentwicklung im langjährigen Mittel orientieren (DWD, München). Für die höher gelegenen

Tab. 113: Gemessene und berechnete Solummächtigkeiten.

Gesteine im UG	Gemessene Solummächtigkeiten der Residualhorizonte [cm]	Berechnete Solummächtigkeiten [cm] / 10ka 1)				
Zugspitzplatt:						
Wettersteinkalk	2	1,3				
Westl.Karwendelgrube:						
Muschelkalk	4	1,5				
Östl. Karwendelgrube:						
Reichenhaller Kalk	3	1,0				
Reichenhaller Brekzie	12	4,0				
Reiteralpe:						
Dachsteinkalk, weiß	5	4,1				
Dachsteinkalk, rotgeädert	15	1,3				
Dachsteinkalk, rot bis rosa	16	6,0				
Dachsteinkalk, rot, brekziiert	25	6,7				
Gosaukalk, z.T. brekziiert	10	4,3				
 Eingerechnete Dichten: f ür Gebiete Reiteralpe, Z 	Lehm: 1,5 g/cm ³ , Kalkstein 2,65g/cm ³ ; K ugspitzplatt; 16cm/10ka gültig für Karwer	R = Kalkabtragsrate postglazial: 34cm/10ka gültig idelgrube				

Tab. 114: Sedimentationsraten (Silikatstaub) im Untersuchungszeitraum.

Betrachtete Zeiträume	Sedimentationsraten [µm pro betrachteter Zeitraum]		
Winter, aufbauende Schneedecke (trockene Deposition, Mittelwert alle Gebiete)	1,6		
Winter, abbauende Schneedecke (trockene Deposition, Mittelwerte alle Gebiete)	ebiete) 2,9		
Winter, aufbauende Schneedecke:			
- Zugspitzplatt	0,4-3,7		
- Karwendelgrube	0,1 - 0,9		
- Reiteralpe	0,1 - 0,6		
Frühjahr, abbauende Schneedecke:			
- Zugspitzplatt	2,6 - 3,8		
- Karwendelgrube	0,4 - 3,7		
- Reiteralpe	3,0 - 5,2		

Gebiete ZP und WKG umfasst der "Normwinter" 240 Tage (Oktober bis Mai) und für die RA 210 Tage (Mitte Oktober bis Mitte Mai). Der "Normsommer" bezieht sich auf 120 Tage (ZP, WKG) bzw. 150 Tage (RA). Eine weitere Differenzierung ergibt sich für die Wintereinträge durch die Berücksichtigung der Phasen der Schneedeckenentwicklung.

5.5.2 Sedimentationsraten im Winter und Sommer

Die winterliche Sedimentationsrate ergibt sich als Summe der Raten von auf- und abbauender Schneedecke (Winter, Frühjahr), wobei die Werte im Frühjahr deutlich erhöht sind. Die mittleren Sedimentationsraten betragen für das Winterhalbjahr zwischen 2,9 µm und 4,6 µm (Methode: Staub von Oberflächen). Der gesamte winterliche Staubeintrag (Totalisatorwannen) liefert Werte zwischen 4 μ m und 12 μ m. Die Sommerwerte (Methode: Staubfangkästen) liegen zwischen 4 μ m und 8 μ m (Tab. 114, Tab. 115).

5.5.3 Sedimentationsraten und Solummächtigkeiten

Die Gegenüberstellung der berechneten Solummächtigkeiten mit den Sedimentationsraten aus der Staubdeposition basiert auf den Residualgehalten der drei Hauptgesteine, da sie die größten Flächen einnehmen und die entsprechenden Kalkabtragsraten bekannt sind (Tab. 116).

Interpretation:

Unter der vereinfachten Annahme von konstanten Sedimentations- und Erosionsbedingungen hat sich im Verlaufe der letzten 10.000 Jahre eine <u>Silikatschicht von</u> <u>9 cm bis 13 cm</u> gebildet. Diese übersteigt die potentiellen Solummächtigkeiten aus der Karbonatverwitterung um ein Vielfaches (Faktor: 2 bis 10). Die ermittelten Raten lägen noch höher, wenn man den sommerlichen Humus-anteil (ca. 50% am Gesamteintrag) einrechnen würde. Die Messwerte der periglazialen Deckschichten sind im Mittel sogar noch höher (Faktor: 3 bis 7) als die aus den Staubmessungen hochgerechneten Sedimentationsraten. Hier zeigt sich die holozäne Überprägung und pedogenetische Entwicklung, besonders durch solifluidale Prozesse während der Schneeschmelze. Sekundäre Umlagerungsprozesse (Frostanfälligkeit, hohe Fließfä-higkeit, Erodierbarkeit) werden zudem durch die schluffig-sandige Textur der äolischen Substrate begünstigt. Diese rezenten periglazialen Prozesse sind der Grund für die um ein Vielfaches erhöhten Solummächtigkeiten der kolluvialen Deckschichten.

Abschließend zeigen sich im Vergleich der ermittelten Sedimentationsraten mit jüngeren Forschungsergebnissen ähnliche Größenordnungen (Tab. 117).

Tab. 115: Mittlere Sedimentationsraten (Silikatstaub, Messzeitraum 2002, 2003)

Gebiet	Aufbauende Phase ¹⁾ [µm]	Abbauende Phase ²⁾ [µm]	Wintersumme (aufbauend + abbauend) [µm/Winterjahr]	Wintersumme (Totalisatorwert) ³⁾ [µm/Winterjahr]	Sommersumme [µm/Sommerjahr)	Jahresrate (Winter + Sommer) [µm/a]
	A	В	A+B	C	D	A+B+D
ZP	1,8	2,8	4,6	5,3	8,2	12,8
WKG	0,5	2,4	2,9	12,2	6,6	9,5
RA	0.3	4.2	4.5	4.0	4,2	8.7

2) 60d für ZP und WKG; 50d für RA

 Wert von WKG und RA aus der Totalisatorwanne (1350cm²), Wert aus ZP von den Staubfangkästen (Mittelwert von SK1 bis SK5), die über den Winter aufgestellt waren, da Totalisatorwanne 2003 zerstört wurde

Tab. 116: Gemessene und berechnete mittlere Solummächtigkeiten.

Gebiet / Geolo- gie	Solummächtigkeit [cm] Residualhorizonte Messwert	Solummächtigkeit [cm / 10ka] Residualhorizonte berechnet	Solummächtigkeit [cm] Lößbraunerden Messwert	Solummächtigkeit [cm / 10ka] Flugstaubsedimentation (Silikat) hochgerechnet aus Messwerten
ZP (wk)	2	1,3	40	12,8
WKG (mk)	4	1,5	65	9,5
Reiteralpe (dk)	5	4,1	65	8,7
Berechungsbasis	: Residualgehalte de	Hauptgesteine (Wet	terstein-, Muschel-, Da	achsteinkalk, Karbonatgehalt > 95%)

Tab. 117: Äolische Sedimentationsraten aus Gebirgsregionen im Vergleich.

Untersuchungsgebiet	Untersuchtes Material	Quelle	Sedimentationsrate [µm/a, bzw. cm/10ka]	
 Wettersteingebirge, alpine Stufe Karwendelgebirge, alpine Stufe Reiteralpe, subalpin bis alpin 	Staub von Schneeober- flächen, Regen	KÜFMANN diese Arbeit	14,4 9,5 9,7	
Wind River Range, USA, alpine Stufe	Staub aus Regen, von Schneeoberflächen	DAHMS und RAWLINS (1996)	0,1 - 7,4	
Schweizer Alpen, nivale Stufe	Saharastaub, Gletscher	WAGENBACH und GEIS (1989)	0,5	
Kreta, alpine Stufe	Saharastaub in Boden	NIHLÉN und OLSSON (1995)	7,4 - 24	

6 Diskussion und Bewertung

6.1 Bewertung der Ergebnisse zum Bodeninventar

A) Rezent-äolischer Einfluss

In allen oberflächennahen Horizonten der Hauptbodentypen ist glimmerreicher Fremdstaub dokumentiert und anhand ausgewählter Kennwerte (Chemie, Mineralogie, Korngröße) bewiesen. Diese vergleichende Analyse von rezentem Staubeintrag und Böden wurde bisher nur in wenigen Studien zu außereuropäischen Gebirgsböden angewandt (DAHMS 1993; DAHMS und RAWLINS1996).

Der Fremdstaub ist im gesamte Bodensystem in unterschiedlicher Intensität deponiert. Besonders auffällig und gut nachweisbar ist die Staubdeposition in den organogenen Fels- und Skeletthumusböden, während sie in den lithogenen Rohböden (z.B. Carbonat-Lockersyroseme) zurücktritt. Ursache hierfür ist das Zusammenspiel von folgenden zwei Gunstfaktoren in den organogenen Bodentypen.

Erstens der bereits deutliche Bewuchs mit alpiner Rasenvegetation (z.B. Caricetum firmae), deren erhöhte Rauigkeit den Staub bremst und fixiert. Diese Oberflächeneigenschaft konnte mit den platzierten Kunstrasenmatten auf den Staubfangkästen nachempfunden werden. Die Messwerte zeigen einen positiven linearen Zusammenhang zwischen dem Bedeckungsgrad der Vegetation [%] im Umkreis der Staubfangkästen und den äolisch deponierten Schluff- und Feinsandmengen an der Bodenoberfläche. Dieses Ergebnis bestätigt auch die Kartierbefunde aus den Schweizer Alpen (FRIES 1985, STICHER et al. 1975). Der zweite Gunstfaktor ist der noch geringe pedogene Verwitterungsstatus der Felsund Skeletthumusböden. Dadurch sind die Fremdsilikate und Schwerminerale noch gut erhalten und auch die äolische Textur ist pedologisch eindeutig identifizierbar. Hier ist die Korngrößenverteilung der Stäube in den Oberbodenhorizonten mit Grob- und Mittelschluff als typischer Lösszeiger zu nennen (Pécsi und Richter 1996; STAHR et al. 1989; THALHEIM und FIEDLER 1990; Völkel 1991a,b). Damit spiegeln die Oberflächenhorizonte (z.B. Of, Oh, Aih) in ihren äolischen Kennwerten das deponierte Staubmaterial auf Schneeoberflächen am deutlichsten wider.

B) Nicht-rezent äolischer Einfluss

Dieser zeigt sich in mächtigen allochthonen Varianten der Braunerde, die auf den z.T. flächig vorhandenen Deckschichten entstanden sind. Als Leitbodentyp wird die Lössbraunerde ((Ah)/Bv/II(T-)Cv) kartiert. Ihre Subtypen lassen sich mit Hilfe des U/T-Quotienten deutlich von den braunen Residualböden (z.B. Terra fusca-Rendzina) unterscheiden. Auf der Reiteralpe gelingt auch meist die Abgrenzung zur autochthonen Braunerde aus Gosaukalken oder sandig verwitternden Dachsteinkalk-Brekzien. Als wichtigster Indikator der residualen Bodenentwicklung gilt u.a. auch hier der Tongehalt. Die allochthonen und autochthonen Karstböden lassen sich eindeutig mit jenen Kennwerten (z.B. SiO₂-Gehalt, Schwerminerale) unterscheiden, die sonst in der Analyse von periglazialen Mehrschichtprofilen verwendet werden (ARTMANN und Völkel 1999, Bäumler et al. 1996, 2002; BIRKELAND et al. 1987).

C) Altersstellung

Einen zeitlichen Anhaltspunkt für die nicht-rezente Lössdeposition liefert die räumliche Verteilung der Lössbraunerden innerhalb der Lokalmoränen des Brünnl-Standes auf dem Zugspitzplatt. Sie sind aufgrund von fossilen Bodenresten mit dem Egesen-Stadium (Jüngere Dryas, 11.000 -10.000 yrs. B.P.) parallelisiert (Hirt-LREITER 1992). Diese relative Chronostratigraphie läßt vermuten, dass die Staubdeposition hauptsächlich am Übergang zwischen Spätglazial und Holozän stattfand. Diese Zeitspanne gilt als die produktivste Phase der Lösseinwehung nach dem Pleistozän (MAHANEY et al. 1996; BOCKHEIM and KOERNER 1997; WEISSHAAR 1999 et al.).

Im Verlaufe des Holozäns wurde das Primärsubstrat dann diagenetisch verfestigt und zu Lösslehmen verwittert (SCHÖNHALS 1957, 1960). Die vorliegenden Kartierergebnisse stützen die Theorie einer einst flächendeckenden Lössschicht, die in jüngster Zeit auch in der alpinen Höhenstufe der Schweizer Alpen bewiesen wurden (VEIT und Höfner 1993; MAILÄNDER und VEIT 2001).

D) Klassifizierung und Nomenklatur

Nach der Klassifikation von Lössen (Pécsi und Richter 1996) gehören die Lösslehme strenggenommen zu den Braunlössen mit Dominanz von Grobschluff.

Da dies bei den Lössbraunerden der vorliegenden Arbeit nicht immer der Fall ist, wird "Lössderivat" vorgeschlagen. Dies läßt für die Einordnung der Subtypen und Varianten einen größeren Spielraum. Hinsichtlich der räumlichen Verbreitung der äolischen Substrate ist die Einordnung "Lössderivat in lückenhafter Verbreitung" (Pécsi und RICHTER 1996, S. 136) treffend.

Im Berchtesgadener Raum werden die äolischen Sedimente ebenfalls als kolluviale Fremddecken über dem Anstehenden eingeordnet (FREYER et al. 1993; KONNERT 2004). Substrathomogenität, Solummächtigkeit und die Bevorzugung der Süd- bis SE-exponierten Hänge sind Parameter, die das Postulat von FREYER et al. (1993 und 1986: in LANGENSCHEIDT 1995) untermauern.

Dieses "Äolium-Kolluvium" ist durch die vorliegende Arbeit nun auch durch mineralogische Analysewerte bestätigt. Die Dominanz von Hornblende und der Epidot-Zoisit-Gruppe weist in die vermuteten Primärlieferquellen der Stäube (Hoher Tauern). Hingegen ist das postulierte sekundäre Liefergebiete der kristallinen Fernmoränen in den Talräumen (FREYER et al. 1993; ZECH und Vo-ELKL 1979; ZECH und Wöllfel 1974) für rezenten Staubeintrag keine ausreichende Erklärung.

Eine Alternative zum Begriff "rezenter Flugstaub" ist alpiner Löss bzw. "alpine loess" (LITAOR 1987, S. 142). Er umfasst zeitlich sowohl nicht-rezente als auch rezente Flugstaubablagerungen. Er ist auch räumlich treffend, da mit "alpin" bereits die dominante vegetationsgeographische Höhenstufe der rezenten Staubdeposition angesprochen wird (GRUBER 1976, 1980). Räumlich neutral ist zwar der Begriff "Gebirgslöss", er trifft aber inhaltlich nicht, da er grobskeletthaltige äolische Sedimente in Gebirgen definiert (Pécsi und RICHTER 1996).

E) Mögliche tertiäre Bodenreste

Im Bereich der Reiteralpe wurde auch den bodenkundlichen Hinweisen zu roten Karstböden (GILLITZER 1920, GÜMBEL 1901, RATHJENS 1938) nachgegangen. Ihre Mineralanalysen zeigen jedoch, dass sie vorwiegend ein Verwitterungsphänomen der rötlichen Residuallehme der Dachsteinkalk-Brekzien sind. Die vorliegenden Profile der rötlichen Terra fusca-Rendzina aus dem Kontaktbereich Dachsteinkalk /ehemalige Jurabedeckung, können dem roten "Bolus" von GÜMBEL (1901) zugeordnet werden. Ob einige der Karstfüllungen aufgrund hoher Gibbsit- und Kaolinitgehalte möglicherweise doch Rotlehmreste einer eozänen, subtropischen Verwitterungsdynamik sind (FRISCH et al. 1998, 2000; KUHLEMANN et al. 1999; THIEDIG 1970; SKOWRONEK 1978), konnte mit den durchgeführten Untersuchungen nicht endgültig entschieden werden. Ebenso bleibt die Frage nach dem Grad der Beteiligung von äolisch transportfähigen Verwitterungsresten der kristallinen Augensteinlandschaft am Bodensubstrat offen.

F) Zusammenfassung der Bodenentwicklung

Folgende Prozesse der Bodenentwicklung sind typisch:

- Akkumulation von Lösungsresiduum zu autochthonen T-Horizonten
- Akkumulation von organischer Substanz zu mächtigen O-Horizonten
- 3) Rezenter Eintrag von allochthonen Flugstäuben
- Spätglaziale Sedimentation von äolischen Deckschichten

Die Prozesse 1) und 2) spiegeln die Genese der autochthonen Karbonatböden in Einklang mit der allgemein gültigen Bodensukzession für die Nördlichen Kalkalpen wider (z.B. ZÖTTL 1966, GRACANIN 1972, MISHRA 1982). Allerdings wird das nach KUBIENA (1944) postulierte Klimaxstadium der Norm-Terra fusca i.d.R. aufgrund der klimatisch-geologischen Gegebenheiten nicht erreicht. Durch die geringen Gehalte an Residualtonen endet die Bodenentwicklung auf den reinen Kalken der Untersuchungsgebiete im Stadium der reifen Polsterrendzina bzw. der Terra fusca-Rendzina. Besonders die Residualtonbänder auf Wetterstein- und Muschelkalk repräsentieren in ihrer Mächtigkeit (2 cm bis 5 cm) die postulierte holozäne Solumentwicklung (z.B. GROTTENTHALER 1993, 1992; MISHRA 1982; RODENKIRCHEN 1976).

Erst mit der spätglazialen Lösssedimentation (Prozess 4) konnten mächtige Braunerden (Ah/Bv/IITCv) entstehen, die allochthon über den T-Horizonten liegen. Aufgrund der flächenhaften Verbreitung der äolischen Deckschichten, sind die Lössbraunerden auf dem Zugspitzplatt und in der Westlichen Karwendelgrube flächenanteilig von größerer Bedeutung als die Kalkverwitterungslehme. Auf der Reiteralpe hingegen ergänzen die allochthonen Lössbraunerden das vielfältige Mosaik der autochthonen Mineralböden (Terra fusca-Rendzina, flachgründige Terra fusca, autochthone Braunerden). Durch die holozänen Verlagerungsprozesse tritt häufig Vermischung von Residuum mit rezentem Flugstaub (Prozess 3) auf. Deshalb sind die Bodentypen als <u>vorwiegend residual</u> bzw. <u>vorwiegend äolisch</u> geprägt anzusprechen.

6.2 Bewertung der Ergebnisse zur Staubquantifizierung

A) Stäube von Schneeoberflächen

Die neu eingeführten Rechengröße der "Windtätigkeit" liefert ein Maß für den Einfluss des Parameters Wind auf die Staubraten. Damit kann die Abhängigkeit der Staubeinträge pro Windrichtungssektor (30°) auf der Grundlage von Häufigkeitstabellen statistisch geprüft werden. Die linearen Regressionsanalysen stellen deutlich die Windtätigkeit aus südlichen Richtungen (120° bis 210°) als Ursache des Staubtransports im Winter und Frühjahr heraus. Die jahreszeitlich veränderten Mineralinhalte und –anteile der Stäube bekräftigen die rechnerischen Interpretationen. Diese kombinierte Methode liefert erstmals einen quantifizierten Beleg für die Aussagen, dass bevorzugt Föhnwinde kristalline Stäube bringen (z.B. SCHÖNHALS 1957, 1960; WINKLER V. HERMADEN 1945; SAITNER und PFADENHAUER 1989; VALENTIN 1902).

Die Quantifizierung auf Schneeoberflächen berücksichtigt die Schneedeckenentwicklung (Phase des Auf- und Abbaus) von Oktober bis Mai und die Großwetterlagen im Alpenraum. Die Probennahmen am Ende typischer Witterungsverläufe kombiniert mit der Auswertung der staubrelevanten Parameter (Wind, Niederschlag, Neuschneezuwachs) ermöglichen erstmals ein differenzierteres Bild der äolischen Dynamik im Winter und Frühjahr.

B) Stäube aus Regenniederschlag

Die gewählte Methodik (Staubfangkästen) liefert für die Nördlichen Kalkalpen zum ersten Mal Staubeinträge nahe der Bodenoberfläche. Die Fangkästen mit abdeckenden Kunstrasenmatten empfinden die Rauigkeit von Rasenoberflächen (z.B. Caricetum firmae) nach. Dieser Faktor wird zwar in zahlreichen Untersuchungen betont, in die Staubmessungen aber kaum einbezogen (Logie 1983; MUNN und SPACKMAN 1999; REHEIS und KIHL 1995; SCOTT 2000; VANMAERCKE-GOTTIGNY 1981). Der wertvolle Ansatz von HANNOSCHÖK et al. (1999) wurde in der vorliegenden Konstruktion berücksichtigt. Die Verwendung von Kunstrasenmatten, wie er sie zur Messung von Erosionsraten von landwirtschaftlich genutzten Flächen eingesetzt hat, hat sich auch im Hochgebirge bewährt. Die häufige Kontamination mit Bodenmaterial durch Hangwassertransport wurde in der vorliegenden Arbeit durch eine Erhöhung der Fangkästen ausgeschaltet. Allerdings werden durch die häufigen Gewitterregen meist Mischproben (nasse + trockene Deposition) erfasst. Witterungsperioden ohne Niederschlag sind selten, entsprechend liegen nur wenige Messwerte der trockenen Deposition vor. Letztere konnte auch nicht herkömmlich (z.B. Einsatz von Klebeflächen, Haftfolien) erfasst werden, da die Methode entgegen einiger Meinungen in der Aerosolforschung (DIEM und JURKSCH 1961; EFFENBERGER 1959a, b; HASENCLEVER 1954; MELDAU 1956) sich im Hochgebirge nicht bewährt hat.

Die Mischprobenwerte sind bei der Berechnung der potentiellen Sedimentationsraten dann ein Manko, wenn es um die Gewichtung von trockener und nasser Deposition im Sommer geht. Jedoch zeigen die Ergebnisse auch, dass in Intervallen ohne Niederschlag die Staubinhalte an der Nachweisgrenze liegen. Dies wurde als Anhaltspunkt gewertet, der trockenen Deposition im Sommer eine untergeordnete Rolle zuzuweisen.

C) Äolische Dynamik

Der Transport durch Südwinde hat ganzjährig Bedeutung. Jedoch werden Herkunft und Zusammensetzung des Staubs deutlich von der Entwicklung der Schneedecke in den Liefergebieten gesteuert. Im Hochwinter ist die periglaziale Höhenstufe der Zentralalpen weitgehend schneebedeckt. Entsprechend werden die deponierten Mineralstäube dem Ferntransport bei Südströmung zugeordnet. Dieser Saharastaub wird vorwiegend trocken deponiert, wobei er aber auch mit geringen Neuschneefällen (Schneedeckenzuwachs < 1 cm) während Föhnphasen an der Oberfläche (0 cm-1 cm) erfasst wird.

Die Winterproben zeigen den Fernstaub unverfälscht, während im späten Frühjahr bereits Beimengungen aus anderen Lieferquellen (Zentralalpen, Südalpen, lokale Umgebung) hinzutreten. Mit diesen Ergebnissen ist die Aussage in der Literatur, dass die Zentralalpen generell das wichtigste Quellgebiet sind, deutlich zu differenzieren.

Mit dem sukzessiven Schneedeckenrückgang im Frühjahr steigen auch die Humusanteile in den Schneeproben. Der Humus ist auch das Charakteristikum der Stäube aus Regenniederschlag. Das organische Material stammt in den Übergangszeiten (Herbst, Frühjahr) weitgehend von lokalen Quellen. Durch die verlängerte Wachstumsperiode in den tieferen Lagen gelangt organisches Material auf die Schneeflächen der alpinen bis nivalen Stufe. Besonders wichtig dabei sind lokale Windsysteme (BOCKHEIM und KOERNER 1997; MASON et al. 1999; MCKENNA NEUMAN 1993; OFFER und GOOSSENS 1995).

Da die Mikroreste in den Stäuben von den Vegetationsgesellschaften der montanen bis alpinen Stufe stammen, ist eine genaue Herkunftsbestimmung des humosen Feinmaterials (< 2 mm) nicht möglich. Hingegen stammen die Makroreste (Blätter, Stängel, Samenkapseln > 2 mm) sicher aus der unmittelbaren Nachbarschaft.

D) Eigenschaften der Stäube

Lichtoptische und mineralogische Analysen liefern die allgemein anerkannten Zeigerwerte für Saharastaub (BURT 1991; GIOVANOLI 1982; HAEBERLI 1973; HAEBERLI et al. 1983; PRODI und FEA 1979). Die Oxide (z.B. SiO₂, Fe₂O₃ und Al₂O₃) liegen in den typischen prozentualen Anteilen vor (CHESTER und JOHNSON 1971a; COUDÉ-GAUS-SEN 1985; NIHLÉN und OLSSON 1995). Die Dominanz der Mineralkörner (Calzit, Quarz, Feldspäte) liegt im Mittelschluff-Intervall, massenhaft treten Tonminerale (< 10 µm) dazu.

Herausragend in den Schneeproben sind gerundete Quarze mit Eisenoxidbelägen, Diatomeenreste, Gips und Gibbsit. Hingegen fehlen Palygorskit oder Halit als aride Indikatoren (Coubé-GAUSSEN 1982, 1985; GANOR 1991; Pye 1993; YAALON und GANOR 1979). Insgesamt sind die Mineral- und Korngrößendaten aber in Einklang mit anderen Ergebnissen von Firn-, Schnee- und Eisbohrkernproben aus dem Alpenraum (Bücher und Lucas 1984; Bücher 1986; Bücher und Dessens 1992; Coudé-GAUSSEN 1982; De ANGELIS und GAUDICHET 1991; MORALES 1979; SCHWIKOWSKI et al. 1995).

E) Bedeutung der Stäube für das Bodensystem

Unabhängig von der geographischen Lage der Lieferquellen hat der äolische Transport von Humus einen wesentlichen Einfluss auf die Bodenbildung in der Frostschuttstufe. Aufgrund der vorliegenden Ergebnisse ist der humose Flugstaub ein Anstoß zur Bildung der initialen Aih-Horizonte der Syrosem-Rendzinen. Damit werden die Annahmen von ZöTTL (1950, S. 174) wieder aufgegriffen, der das humose Material auf Schneeoberflächen aufgrund der Nährstoffvorräte (1,72% N_t; 0,20% K_t; 0,11% P_t) auch als "Düngeschlamm" bzw. "Schneedünger" bezeichnet.

In diesem Zusammenhang sind auch die Moder- und Tangelrendzinen der subalpinen Stufe zu nennen. Bereits von LEININGEN weist auf die "pulverige, torfartige Struktur des Alpenhumus" (1912, S. 272) hin und SOLAR (1964, S. 17) bezeichnet das Gefüge der Feinerde als "feinstkrümelig und kohlig".

In der vorliegenden Arbeit dokumentieren gerundete Quarze und Zirkone rezenten Mineralstaub in den Humusauflagen. Wird nun die Vegetations- und Bodendecke durch erosive Prozesse gestört, dann fungieren diese organischen Auflagen ihrerseits wieder als lokale Lieferquelle für humosen Flugstaub. Mit dieser Überlegung würde die Winderosion einen bisher wenig beachteten Faktor einerseits für den "Humusschwund im Gebirge" (BOCHTER et al. 1981, S. 11; SEVINK et al. 1998), andererseits für einen Humusgewinn an anderer Stelle darstellen.

Mit Beginn der Schneeschmelze nehmen die lokalen Lieferquellen flächenanteilig zu. Entsprechend fallen die Sedimente auf den letzten Altschneeflecken durch Grobskelett (2 mm bis 20 mm) und erhöhte Grobsandantelle (Mittel: 5%) auf, die den "niveo-eolian deposits" anderer Arbeiten entsprechen und zusätzlichen gravitativen oder fluvialen Materialtransport anzeigen (CALLIEUX 1978; KOSTER und DIJKMANS 1988; WARREN 1979).

In diesem Zusammenhang ist die Bereitstellung von äolisch transportfähigen Partikeln der Sand- und Schluff-Fraktion durch mechanische Verwitterungsprozesse zu diskutieren (McGREEVY und WHALLEY 1982; SASS 1998; SMALLEY und SMALLEY 1983).

Dieser autigene Kalkschluff taucht als Teil des Gesteinsabriebs (< 2 mm) vorwiegend in den initialen Bodentypen (Syroseme, Polsterrendzinen) auf. Auffällig fehlt aber der Karbonatgehalt in der Zusammensetzung der Flugstäube. Eine Ursache kann die grundsätzlich gehemmte Deflation bei der Durchfeuchtung des Untergrunds sein (DIJKMANS und MÜCHER 1988; HAMISH et al. 1995; LOGIE 1983; MCKENNA 1993). Diese bewirkt in den Untersuchungsgebieten, dass Karbonatstäube mit Tonund Humusteilchen zu größeren Aggregaten verbacken und in den Schuttkörper oder Karsthohlräume geschwemmt werden. Die Akkumulation von tonig-schluffiger Feinerde im Schuttkörper fördert wiederum die Besiedelung mit Kalkschuttgesellschaften (BIRKLAND et al. 1987; NEUWINGER 1970; ZÖTTL 1950).

In der subnivalen Stufe wird zudem durch die hohen Niederschlags- und Schmelzwassermengen die chemische Verwitterung beschleunigt (BAUER 1964; HÜTTL 1999), die aufgrund der größeren Lösungsoberfläche verstärkt die Kalkstäube betrifft. Diese sekundäre Verlagerung von Feinerde (< 2 mm) betrifft auch den rezenten Fremdstaub. So konnten Glimmeranreicherungen im Schutt erst in größerer Tiefe in der Feinerde nachgewiesen werden, während sich der Eintrag in vegetationsbedeckten Böden der alpinen Stufe unmittelbar an der Oberfläche zeigt.

F) Sedimentationsraten

Nimmt man vereinfachend konstante Sedimentationsund Erosionsbedingungen an, dann hat sich im Verlaufe der letzten 10,000 Jahre durch äolische Deposition eine Silikatschicht von 9 cm bis 13 cm gebildet. Diese allochthone Schicht ist um ein Vielfaches (Faktor: 2 bis 11) mächtiger als die möglichen autochthonen Residualbänder. Äolisches Substrat leistet damit einen bedeutenden Beitrag für die Bildung von Mineralböden im Hochkarst. Der Eintrag von Flugstaub in den waldfreien Karst der Nördlichen Kalkalpen ist ein rezenter Prozess, der im Spätglazial begonnen hat und bis heute andauert.

7 Zusammenfassung

Die wichtigsten Punkte aus den Teilzusammenfassungen (Kap. 4.5, 5.4) sind aufgeführt.

- Die Oberböden (A-, O-Horizonte) sind durch glimmerreichen Flugstaub rezent beeinflusst. Durch Verwitterung der allochthonen Minerale kommt es zu einer deutlichen Verlehmung der organischen Horizonte.
- Lössbraunerden (A/B/IIC) sind das Resultat einer spätglazialen Lössdynamik, die in der alpinen Stufe zu Flugstaubdecken geführt hat. Diese sind als periglaziale Deckenreste in allen Untersuchungsgebieten nachgewiesen worden. Es liegt die Substratfolge "Lösslehm über Residualton" vor.
- Die Bedeutung der "Verstaubung der Hochgebirgsböden" liegt in einer zusätzlichen Substratlieferung und Förderung der Bodenbildung auf reinen Kalksteinen.
- Die Bildung autochthoner Mineralböden (Terrae calcis, Braunerden) wird vom Substrat und der Variabilität des Ausgangsgesteins (Residualgehalt, tektonische Brekziierung) gesteuert, sodass auf der Reiteralpe eine herausragende Vielfalt von autochthonen braunen Mineralböden auftritt. Entsprechend ist dort die Bedeutung der Terrae calcis am größten.
- Die autochthonen braunen Mineralböden lassen sich in den meisten Fällen mit Hilfe von einfachen Geländeund Labormethoden unterscheiden. Allen voran ist hier die Korngrößen- und Mineralanalyse sowie die Bodenfarbe zu nennen.
- Die Flugstaubdeposition wird maßgeblich durch die Relieffaktoren (Hangmorphologie, Luv-Lee) und die auskämmende Wirkung der Vegetation gesteuert, wie

die Zunahme der rezenten Staubeinträge mit abnehmender Höhenstufe, steigender Vegetationsbedeckung und in Lee-Lagen zeigt.

- Der Humusgehalt ist ein Charakteristikum der Stäube aus Regen und der Initiator für die Bodenbildung in der subnivalen Stufe. Hingegen bestehen die Stäube im Winter ausschließlich aus Mineralstaub. Calzit, Glimmer, gerundete Quarze und Feldspäte sowie Diatomeenreste weisen das Material als Saharastaub aus, und zeigen Ferntransport durch südliche Winde im Winter an.
- Die Staublieferung ist in jahreszeitlicher Abhängigkeit (Schneebedeckung) unterschiedlichen Liefergebieten zuzuordnen. Dabei wird das Gros des Staubes im Sommer aus den kristallinen Zentralalpen mit südlichen Winden geliefert. Ebenso wird mit niederschlagsbringenden Winden (NW, W) auch Material aus den West-alpen geliefert. Im Gegensatz dazu sind im Winter weiter südlich gelegene Gebiete ("Sahara) die vorrangigen Staubquellen.
- Ein Gro
 ßteil des Staubes wird im Winter bevorzugt in Trockenphasen durch herrschende S
 üdwinde abgelagert und gelangt durch Schmelzw
 ässer in die B
 öden. Im Sommer hat die nasse Deposition durch Regen eine gr
 ößere Bedeutung.
- Die äolische Dynamik ist seit dem Spätglazial ein andauernder Prozess. Durch die Quantifzierung können seit der Eisfreiwerdung holozäne Sedimentationsraten von 9 cm bis 13 cm (Silikatstaub) berechnet werden. Das ist ein Vielfaches (Faktor 2 bis 11) der durch die Karbonatverwitterung erzeugbaren Solummächtigkeiten.

8 Danksagung

Großer Dank geht an Dr. M. VOGEL und Dipl.-Biol. H. FRANZ (Nationalpark Berchtesgaden). Sie haben die Drucklegung der umfangreichen Arbeit in der Schriftenreihe der Forschungsberichte des Nationalparks Berchtesgaden finanziell ermöglicht. Ebenso haben mir Dr. V. Konnert und Dipl.-Geogr. H. Vogt Datenmaterial bereit gestellt.

Das Forschungsvorhaben wurde inhaltlich von Prof. Dr. K. Rögner und Prof. Dr. O. Baume, LMU München unterstützt. Finanziell wurde das Forschungsvorhaben zwischen 2001 und 2003 von der Deutschen Forschungsgemeinschaft (DFG, Bonn) im Rahmen einer Sachbeihilfe gefördert. Daneben konnten auch Zuschüsse aus der Förderung der Gleichstellung von Frauen in Lehre und Forschung (LMU München) eingeworben werden.

Großzügige Unterstützung stammt von Prof. Dr. H. SCHMID, Dr. U. RAST und Fr. Dipl.-Geogr. L. DUFFY (Geologisches Landesamt, München). Ohne ihr Wohlwollen und den tatkräftigen Einsatz wären die umfangreichen Mineralanalysen nicht durchführbar gewesen.

Dank auch an die Leiter der Bergbahnen Hr. MEIDER, Mittenwald und Hr. Dr. HURM, Garmisch-Partenkirchen für ihr finanzielles Entgegenkommen sowie an Dr. THÜNE-MANN, der die kostenlose Mitbenutzung der Bundeswehr-Seilbahn, Oberjettenberg ermöglichte.

Mein größter Dank gilt meinen studentischen Hilfskräften, ohne deren Einsatz die Gelände- und Laborarbeiten nicht zu bewältigen gewesen wären. Hier sind in alphabetischer Reihenfolge genannt: Magister Freiherr JAKOB von GLEICHENSTEIN, Dipl.-Geogr. KATJA KOTHIERINGER, Dipl.-Geogr. ADELHEID RAPPL, Dipl.-Geogr. THOMAS RAUCH, BARBARA RUHLAND, Dipl.-Geogr. SIMONE WERNER.

In der abschließenden Phase der Arbeiten unterstützte mich wieder in gewohnter, selbstloser Manier OStR FRANZ KNEISSL durch kritische Diskussionsbeiträge und mathematische Lösungsvorschläge.

Nicht zuletzt danke ich von Herzen Dipl.-Ing. ANDREAS KÜFMANN für die Anfertigung der Staubfangkästen, die computertechnische Abwicklung sowie die große Geduld in den letzten Jahren.

Schließlich sei den "stillen" Helfern und Helferinnen, die mir freundschaftlich verbunden sind, für ihre seelische Unterstützung gedankt.

9 Literaturverzeichnis

- ALLMAN und LAWRENCE (1972): Geological laboratory techniques, London.
- BAGNOLD, R.A. (1941) : The physics of blown sand and desert dunes. London.
- ARTMANN, S. und Völkel, J. (1999): Bodenkundliche Untersuchungen an periglazialen Deckschichten im Nationalpark Berchtesgaden, Nördliche Kalkalpen. Z. Geomorph. N.F., 43 (4), 463-481.
- BAUER, F. (1964):Kalkabtragsmessungen in den österreichischen Kalkhochalpen. Erdkde, XVIII, 95-102.
- BAUMLER, R., KEMP-OBERHETTINGER, M., ZECH, W., HEUBERGER, H., SIEBERT, A., MADHIKARMI, D.P. und POUDEL, K.P. (1996): Soil weathering on glacial and glaciofluvial deposits in the Langtang Valley (Central Nepal) and its relation to the glacial history. Z. Geomorph. N.F., Suppl.-Bd. 103, 373-387.
- BÄUMLER, R., PETROV, I., LEMZIN, I. und ZECH, W. (2002): Pedogeochemical studies and palaeoenvironmental implications in Kichik Alay Mountain soils (Kyrgyzstan). Z. Geomorph. N.F., 46 (4), 461-474.
- BARTKOWSKI, T. (1973) : Relief linéaire du rempart métacarpathique entant que témoin des cycles éoliens dans l'évolution du relief. *Biuletyn Peryglacjalny*, 23, 167-200.
- BIERMAYER, G. und REHFUESS, K.-E. (1985): Holozäne Terrae fuscae aus Carbonatgestein in den Nördlichen Kalkalpen. Z. Pflanzenernährung u. Bodenkde, 148, 405-416.
- BIRKELAND, P.W. (1974): Pedology, Weathering, and Geomorphological Research. New York. S.285.
- BIRKELAND, P.W., BURKE, R.M. und SHROBA, R.R. (1987): Holocene alpine soils in gneissic circue deposits, Colorado Front Range. Soil chronosequences in the Western United States, Vol. 1590, 1-21.
- BOCHTER, R. (1983): Böden naturnaher Bergwaldstandorte auf carbonatreichen Substraten. Forschungsberichte aus dem Nationalpark Berchtesgaden 6, Berchtesgaden.
- BOCKHEIM, J.G. und KOERNER, D. (1997): Pedogenesis in alpine ecosystems of the Eastern Uinta Mountains, Utah, U.S.A. Arctic and Alpine Research, 29 (2), 164-172.
- Bögel, H. (1971): Beitrag zum Aufbau der Reiteralm-Decke und ihrer Umrandung. Auszug der Disseration an der TU München, 1971.
- Bögli, A. (1969): Le Schichttreppenkarst. Revue Belge de Géographie, 2, 63-82, Brüssel.
- BögLI, A. (1971): Karstdenudation das Ausmaß des korrosiven Kalkabtrags. *Regio. Bas.*, 12 (2), 352-361.
- BOENIGK, W. (1983): Schwermineralanalyse. Stuttgart.
- Bowen, D.Q. (1981): Quaternary Geology: a stratigraphic framework for multidisciplinary work. Boston.
- BRADLEY, R.S. (1989): Quaternary paleoclimatology: methods of paleoclimatic reconstruction. Boston.
- BRAUN-BLANQUET, J. und JENNY, H. (1926) : Vegetationsentwicklung und Bodenbildung in der alpinen Stufe der Zentralalpen (Klimaxgebiet des Caricion curvulae). Mit besonderer Berücksichtigung der Verhältnisse im schweizeri-

schen Nationalpark. Denkschriften der Schweiz. Naturforschenden Ges., 63 (2), I-IX und 183-349.

- BRAUN-BLANQUET, J. und JENNY, H. (1936) : Vegetationsentwicklung und Bodenbildung in der alpinen Stufe der Zentralalpen. Denkschrift der Schweiz. Naturforschenden Ges., 13 (2), 120 S.
- BRONGER, A. (1976): Kalksteinverwitterungslehme als Klimazeugen? Z. Geomorph. N.F., Suppl.-Bd. 24, 138-148.
- BRONGER, A. und KALK, E. (1979): Terrae calcis der Slowakei klimatomorphe oder lithomorphe Böden? Mitt. Dt. Bodenkdl. Ges., 29, 693-704.
- BRUNNACKER, K. (1980) : Young Pleistocene loess as an indicator for the climate in the Mediterranean area. In : Sarntheim, M., Seibold, E. und Rognon, P. (eds.) Sahara and surrounding seas. Sediments and climate change. *Proceedings International Symposium, Akad. der Wissenschaften und Literatur*, Mainz, 1-4 (April 1979), 12, 99-113.
- BUCHER, A. und Lucas, C. (1984): Sédimentation éolienne intercontinentales, poussière saharienne et géologie. Bulletin Centres Récherches Exploration et Production. Elf Aquitaine, 8, 151-165.
- BÜCHER, A. (1986) : Récherche sur les poussières minerales d'origine saharienne. These de Doctorat d'Etat, University of Reims.
- BÜCHER, A. und DESSENS, J. (1992) : Poussières Sahariennes sur la France et l'Angleterre, 6-9 Mars 1991. The Journal of Meteorology, H. 17, 226-233.
- BURGER, D. (1983): Mikromorphologische Untersuchungen der Verwitterungsresiduen im Bereich der Iserlohner Kalkmulden. Karst und Höhle, 1982/1983, 73-75.
- BURGER, R. und FRANZ, H. (1969): Die Bodenbildung in der Pasterzenlandschaft. Neue Forschungen im Umkreis der Glocknergruppe. Wissenschaftl. Alpenvereinshefte, 21, 253-263.
- BURT, S. (1991): Falls of dust rain in Berkshire, March 1991. Weather, 46, 248pp.
- CADLE, R.D. (1975): The measurement of airbone particles. Wiley, New York, 342 pp.
- CALLIEUX, A. (1978): Niveo-eolian deposits. In: Fairbridge, R.W. und Bourgeois, J. (Eds.): Encyclopedia of earth sciences, 6; the Encyclopedia of sedimentology, 501-503.
- CATT, J.A. (1985): Soil particle size distribution and mineralogy as indicators of pedogenic and geomorphic history: examples from the loessial soils of England and Wales. In: K.S. RICHARDS, R.R. ARNETT & S. ELLIS (eds.), Geomorphology and soils. London, 202-218.
- CEGLA, J. (1969): Influence of capillary ground moisture on eolian accumulation of loess. Bulletin de l'Académie Polonaise des Sciences, Série des sciences géologiques et géographiques, 17, 25-27.
- CEGLA, J. (1972): Loess sedimentation in Poland. Acta Universitatis Wratislaviensis, Stud. Geogr., 17, 53-71.
- CELL, A. (1972): Wasserhaushaltsmessungen in subalpinen Böden. Mitt. forstl. Bundesversuchsanstalt zu Wien, H. 98, 153 S.

- CHAMBERLAIN, A.C. (1967): Transport of Lycopodium spores and other small particles to rough surfaces. *Proceedings* of the Royal Society of London, Ser. A, 296, 45-70.
- CHIELDS, C.W. (1992): Ferrihydrite: A review of structure, properties and occurence in relation to soils. Z. Pflanzenernähr. Bodenk., 155, 441-448.
- CHEN, X.Y., SPOONER, N.A. OLLEY, J.M. und QUESTIAUX, D.G. (2002): Addition of aeolian dusts to soils in southeastern Australia: red silty clay trapped in dunes bordering Murrumbidgee River in the Wagga Wagga Region. *Catena*, 47 (1), 1-27.
- CHESTER, R. und JOHNSON, L.R. (1971a): Atmospheric dust collected off the West African coast. Nature, 229, 105-107.
- CHESTER, R. und JOHNSON, L.R. (1971b): Trace element geochemistry of North Atlantic eolian dusts. *Nature*, 231, 176-178.
- CHESTER, R., ELDERFIELD, H. und GRIFFIN, J.J. (1971): Dust transported in the northeast and southeast trade winds of the Atlantic Ocean. Nature, 233, 474-476.
- CHESTER, R., SHARPLES, E.J., SANDERS, G.S., OLDFIELD, F. und SAYDAM, A.C. (1984): Saharan dust incursion over the Tyrrhenian Sea. Atmospheric Environment, 18, 929-935.
- CLEMENS, T., JANTSCHKE, H. SCHÄFFLER, M. (1995): Zur Herkunft der Eisen-Mangan-Erze in Höhlensedimenten der Horizontalhöhlen in der Reiteralm. Die Höhle- Zeitschrift für Karst- und Höhlenkunde, 46 (3), 6-73.
- COLBECK, S.C. (1972): A theory of water percolation in snow. J. of Glaciology, 11 (63), 369-385.
- COLEMAN, S.M. und DETHIER, D.P. (1985): Rates of chemical weathering of rocks and minerals. Orlando.
- COUDÉ-GAUSSEN, G. (1982): Les poussières éoliennes sahariennes. Mise au point. Révue Géomorph. Dyn., 31, 49-69.
- COUDÉ-GAUSSEN, G. (1985) : Présence de grains éolisés de palygorskite das les poussières actuelles et les sédiments récent d'origine désertique. Bull. Soc. Geol. Française, 1, 571-579.
- CREDNER, B., HÜTTL, C. und RÖGNER, K. (1998): The formation and distribution of soils and vegetation at the Zugspitzplatt (Bavaria, Germany) related to climate, aspect, and geomorphology. *Ecologie*, 29 (1-2): 63-65.
- DAHMS, D.E. (1991): Eolian sedimentation and soil development on moraine catenas of the Wind River Mountains, West-Central Wyoming. Ph. D. dissertation, University of Kansas. 340pp.
- DAHMS, D.E. (1992): Comment on "origin of silt-enriched alpine surface mantles in Indian Basin, Wyoming." Soil Science of America Journal, 56, 991-992.
- DAHMS, D.E. (1993): Mineralogical evidence for eolian contributions to soils of late Quaternary moraines, Wind River Mts., Wyoming, USA. Geoderma, 59, 175-196.
- DAHMS, D.E. und RAWLINS, C.L. (1996): A two-year record of eolian sedimentation in the Wind River Range, Wyoming, USA. Arctic and Alpine Research, 28, 210-216.
- DANIN, A. und Canor, E.(1991): Trapping of airborne dust by mosses in the Negev desert, Israel. *Earth Surface Proces*ses and Landforms, 16, 153-162.

- DANIN, A., GERSON, R. und CCARTY, J. (1983): Weathering patterns on hard limestone and dolomite by endolithic lichens and cyanobacteria: supporting evidence for eolian contribution to terra rossa. *Soil Science*, 136, 213-217.
- DARBY, D.A., BURCKLE, L.H. und CLARK, D.L. (1974): Airborne dust on the arctic pack ice, its composition and fallout rate. Earth and Planetary Science Letters, 24, 166-172.
- DAVENPORT, H.M. und PETERS, L.K. (1978): Field studies of atmospheric particulate concentration changes during precipitation. Atm. Environment, 12, 997-1008.
- DE ANGELIS, M. und GAUDICHET, A. (1991): Saharan dust deposition over Mont Blanc (French Alps) during the last 30 years. *Tellus*, 43B, 61-75.
- DESSENS, J. und PHAM VAN DINH (1990): Frequent Saharan dust outbreaks north of the Pyrennes: A sign of climatic change? Weather, 45, 327-333.
- DIEM, M. (1957): Staubniederschlagsmessungen vor und bei Betrieb eines Dampfkraftwerkes. Meteorologische Rundschau, Jg. 10.
- DIEM, M. und JURKSCH, G. (1961): Vergleichsmessungen des Staubgehaltes der Luft nach Niederschlags- und Konzentrationsmethoden, Staub, 21, 345-355.
- DIJKMANS, J.W.A. (1989) : Niveo-aeolian sedimentation of loess and sand : an experimental and micromorphological approach. *Earth Surface and Landforms*, 14, 303-315.
- DILL, H. und ZECH, W. (1980): Schwermineralverteilung in einigen Bayerischen Deckschicht- und Bodenprofilen. Geol. Jb., D 41, 3-22.
- DREW, D.P. (1983): Accelerated soil erosion in a karst area: The Burren, western Ireland. J. Hydrology, 61, 113-124.
- EBERLE, J. (1994): Untersuchungen zur Verwitterung, Pedogenese und Bodenverbreitung in einem hochpolaren Geosystem (Liefdefjord und Bockfjord/Nordwestspitzbergen). Stuttgarter Geogr. Studien 121, 226 S.
- ECKERT, M. (1900): Das Gottesackerplateau (ein Karrenfeld) in der Gebirgsgruppe des Hohen Ifen. Z. Dt. u. Österr. Alpenvereins, 31, 52-60.
- EFFENBERGER, E. (1959a): Untersuchungen über die Meßgenauigkeit der Staubniederschlagsmessung durch Haftfolien. Staub, Bd. 19, 313-319.
- EFFENBERGER, E. (1959b): Vergleichsmessungen mit verschiedenen Staubmeßgeräten. *Staub, Bd. 19*, Nr. 2. (ohne Seitenanzahl).
- EGGENSBERGER, P. (1994): Die Pflanzengesellschaften der subalpinen und alpinen Stufe der Ammergauer Alpen und ihre Stellung in den Ostalpen. Ber. Bayer. Bot. Ges. z. Erforschung der heimischen Flora, 8, 220 S.
- ELLINGBOE, J. und WILSON, J. (1964): A quantitativ separation of non-carbonate minerals from carbonate minerals. J. of Sedimentary Pertrology, 34, 412-418.
- EKHART, E. (1949): Zum Innsbrucker Föhn. Meteorologische Rundschau, 2, 276 S.
- ELLENBERG, H. (1996): Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Stuttgart.
- EMBLETON, C. und KING, C.A.M. (1975): Periglacial geomorphology. London.

ENDERS, G. (1979): Theoretische Topoklimatologie. Forschungsberichte des Nationalpark Berchtesgaden 1.

- FANTONI, R., BERSEZIO, R., FORCELLA, F., GORLA, L., MOSCONI, A. und PICOTTI, V. (1999): New dating of the Tertiary products of the central Southern Alps, bearings on the interpretation of the Alpine tectonic history. *Mem. Sci. Geol. (Padova)*, 51, 47-61.
- FELS, E. (1929): Das Problem der Karbildung in den Ostalpen nach Forschungen im Karwendelgebirge. Petermanns Mitteilungen, Erg.-Heft 202, 85 S.
- FETT, W. (1958): Der atmosphärische Staub. Monographien der experimentellen und theoretischen Physik. Berlin.
- FISCHER, K. (1976): Das Formenbild der Allgäuer Alpen. Mitt. Verband Dtsch. Höhlen- und Karstforscher, 22, 43-48.
- FISCHER, K. (1984): Erläuterungen zur Geomorphologischen Karte 1:25000, GMK 25, Blatt 16, 8443 Königsee.
- FISCHER, K. (1988): Die würmeiszeitliche und stadiale Vergletscherung der Berchtesgadener Alpen. Berliner Geogr. Abhandlungen, 47, 207-225.
- FISCHER, K. (1990): Höhlenniveaus und Altreliefgenerationen in den Berchtesgadener Alpen. Mitt. Geogr. Ges. München, 75, 47-59.
- FLIRI, F. (1975): Das Klima der Alpen. Monographien zur Landeskunde von Tirol, Bd. 1. Innsbruck
- FRANZ, H. (1961): Das Glocknergebiet. Exkursionen durch Österreich anläßlich der Tagung der Deutschen Bodenkundlichen Ges., 6, 102-120.
- FRANZ, H. (1979): Ökologie der Hochgebirge. Stuttgart.
- FRANZ, H. (1980) (Hrsg.): Untersuchungen an alpinen Böden in den Hohen Tauern 1974-1978. Stoffdynamik und Wasserhaushalt. Veröff. Österr. MaB-Hochgebirgsprogramm Hohe Tauern (Österr. Akad.Wiss.), 3, 295 S.
- FRANZ, H. und FRASL, G. (1961): Das Glocknergebiet.; Exkursionen durch Österreich. Mitt. Österr. Bodenkundl. Ges., 6, 102-120.
- FRANZ, H. und SOLAR, F. (1961): Das Raxplateau und seine Böden. Mitt. Österr. Bod.Ges., 6, 212-234.
- FRANZEN, L.G., MATTSON, J.O., MARTENSSON, U., NIHLEN, U. und RAPP, A. (1994): Yellow Snow over the Alps and Subarctic from Dust storms in Africa. March 1991. Ambio, 23 (3), 233-234.
- FREYER, K., LANGENSCHEIDT, E., STEINMETZER, K. und KONNERT, V. (1996): Karte zu den Bodentypen im Nationalpark Berchtesgaden 1:50.000 (Ausgabe 30.03.2001), Nationalparkplan 1996. Hrsg.: Bayerisches Staatsministerium für Landesentwicklung und Umweltfragen.
- FRIEDEL, H. (1936): Ein bodenkundlicher Ausflug in die Sandsteppe der Gamsgrube. Mitt. Dt. Österr. Alpenver., 9, 220-222.
- FRIES, M.A. (1985): Bodenkundliche Studien unter einem Caricetum firmae auf dem Munt la Schera im Schweizerischen Nationalpark. Inaugural-Dissertation, Philosophische Fak. d. Univ. Zürich, 1985.
- FRISCH, H. (1964): Zur Geologie der Nördlichen Karwendelkette im Bereich des Kirchlkars zwischen Isartal im Westen und Karwendeltal im Osten (Tirol). Ungedr. Diplomarbeit TU München, 1964.

- FRISCH, W., KUHLEMANN, J. DUNKL, I., BRÜGEL, A. (1998): Palinspastic reconstruction and topographic evolution of the Eastern Alps during late Tertiary extrusion. *Tectonophy*sics, 297, 1-15.
- FRISCH, W., SZÉKELY, B., KUHLEMANN, J. und DUNKL, I. (2000): Geomorphological evolution of the Eastern Alps in response to Miocene tectonics. Z. Geomorph. N.F., 44 (1), 103-138.
- FRITZ, P. (1976): Arktische Frostbodenformen im Hochgebirge. Mitt. Österr. Geogr. Ges., 188 (2), 237-273.
- FRÜHAUF, M. (1992): Die Bedeutung jungdryaszeitlicher geomorphologischer Prozesse für die Landschaftsgenese in den Mittelgebirgen. Z.geol. Wiss., 20(3), 239-244.
- GANOR, E. (1991): The composition of clay minerals transported to Israel as indicators of Saharan dust emission. Atmospheric Environment, 25A (12), 2657-2664.
- GARDNER, R.A.M. und RENDELL, H.M. (1994): Loess, climate and orogenesis: implications of South Asian loesses. Z.Geomorph.N.F., 38(2), 169-184.
- GERASIMOV, I.P. (1973): Chernozems, buried soils, and loesses of the Russian Plain: their age and genesis. Soil Science, 116, 202-210.
- GIGON, A. (1971): Vergleich alpiner Rasen auf Silikat- und auf Karbonatboden. Veröff. Geobot. Inst. ETH, Stiftung Rübel, 48, 164 S.
- GILETTE, D.A. und WALKER, T.R. (1977): Characteristics of airborne particles produced by wind erosion of sandy soil, High Plains of West Texas. Soil Science, 123, 97-100.
- GILETTE, D.A., BLIFFORD, I.H. und FRYREAR, D.W. (1974): The influence of wind velocity on the size distribution of aerosols generated by wind erosion of soils. J. Geophysical Research, 79, 4068-4075.
- GILLITZER, G. (1913): Geologischer Aufbau des Reiteralp-Gebirges im Berchtesgadener Land. München 1912.
- GIOVANOLI, R. (1982): Der Sahara-Staubfall vom 8 Januar 1982 in der Schweiz. Naturwissenschaften, 69, 237-239.
- GLAWION, H. (1938): Eine ungewöhnliche Periode von Staubfällen im Mai 1937. Zeitschrift f. Angewandte Meteorologie, 54 (9), 284-289.
- GLAWION, H. (1939): Staub und Staubfälle in Arosa. Beiträge zur Physik der freien Atmosphäre, 25, 1-43.
- Görz, F.W.P. (1940): Saharstaub im Rauhreif. Z. Angewandte Meteorologie, 57 (11), 360-361.
- Görz, F.W.P. (1954): Klima und Wetter in Arosa. Frauenfeld. 148 S.
- GOOD, T.R. und BRYANT, I.D. (1985) : Fluvio-aeolian sedimentation – an example from Banks Island, N.W.T. Canada. *Geografiska Annaler*, 67A, 33-46.
- GOOSSENS, D. (1988a): The effect of surface curvature on the deposition of loess: a physical model. Catena, 15, 179-194.
- GOOSSENS, D. (1988b): Scale model simulation of the deposition of loess in hilly terrain. *Earth surface processes and landforms*, 13, 533-544.
- GOOSSENS, D. (1988c): Sedimentation characteristics of natural dust in the wake of symmetrical hills. Z. Geomorphologie, 32, 499-502.

- GOOSSENS, D. (1989): Height distortion and the sedimentation of dust on topographic scale models: considerations and simulations. *Earth surface processes and landforms*, 14, 655-667.
- GOOSSENS, D. (1995): Long-term aeolian loess accumulation modelled in the wind tunnel: The Molenberg case (central loess belt, Belgium). Z. Geomorphologie, Z. Geomorphologie, 39, 112-119.
- GOOSSENS, D. und OFFER, Z.Y. (1993): Eolian deposition of dust over symmetrical hills: an evaluation of wind tunnel data by means of terrain measurements. *Z. Geomorphologie*, 37, 103-111.
- GOUDIE, A.S. (1978): Dust storms and their geomorphological implications. *Journal of arid environments*, 1, 291-311.
- GRAČANIN, Z. (1962): Zur Genese, Morphologie und Mikromorphologie der Hangtorfbildungen auf Kalksteinen in Kroatien. Z. Pflanzenernährung, Düngung u. Bodenkde, 98, 264-272.

GRAČANIN, Z. (1970): Buckelwiesen und ihre Bodenbildungen in den westlichen Lechtaler Alpen. Allg. Forst- u. Jagdzeitung, 141, 193-205.

- GRAČANIN, Z. (1972): Vertikale und horizontale Verteilung der Bodenbildung auf Kalken und Dolomiten im mittleren Abschnitt der Alpen. *Mitt. Dt. Bodenkundl. Ges.* 15, 19-40.
- GRAEDEL, T.E. und FRANEY, J.P. (1975): Field measurement of submicron aerosol washout by snow. *Geophys. Res. Lett.*, 2, 325-328.
- GRAF, G.(1972):Karstmorphologische Untersuchungen im östlichen Tennengebirge, Arb. a. d. Inst. f. Geogr, d. Karl-Franzens Univ. Graz, H. 18. Graz.
- GREMINGER, P. (1982): Physikalisch-ökologische Standortuntersuchungen über den Wasserhaushalt im offenen Sickersystem Boden unter Vegetation am Hang. Dissertation Nr. 7023, ETH Zürich, 1982.
- GROMOLL, L. (1990): Quarzkornoberflächenuntersuchungen an Sedimenten der südwestlichen Ostsee. Ein qualtitativer und halbquantitativer Vergleich. Z.geol. Wiss., 18 (7), 615-635.
- GROTTENTHALER, W. (1982): Alpine Böden aus Carbonatgestein. Mitt. Dt. Bodenkdl. Ges., 34, 105-108.
- GROTTENTHALER, W. (1993): Die Böden. In: RITSCH, H.: Erläuterungen zur Geologische Karte von Bayern 1:25000, Blatt 8343 Berchtesgaden West, 106-110, München.
- GRUBER, F. (1975): Untersuchungen über die Verstaubung von Hochgebirgsböden im Glocknergebiet. Unveröffentlichte Diplomarbeit, Wien.
- GRUBER, F. (1980): Die Verstaubung der Hochgebirgsböden im Glocknergebiet. In: FRANZ, H. (ed.) (1980), 69-90.
- HABER, J. (1988): Beziehungen zwischem dem Humusgehalt/Humusvorrat bayerischer Bergwaldböden und steuernden Standorts- und Bestandsfaktoren. Diss. Unv. Bayreuth. *Bayreuther Bodenkundl. Berichte*, 9, Bayreuth.
- HAEBERU, W. (1978): Sahara dust on the Alps a short review. Z. f. Gletscherkunde und Glazialgeologie, 13 (1-2), 206-208.

- HAEBERLI, W. SCHOTTERER, U. WAGENBACH, D., HAEBERLI-SCHWITTER, H. und BORTENSCHLAGER, S. (1983): Accumulation characteristics on a cold high-Alpine firm saddle from a snow-pit study on Colle Gnifetti, Monte Rosa, Swiss Alps. J. of Glaciology, 29, 260-271.
- HAMANN, C. (1985): Buckelwiesen und Konvergenzformen am Südrand des Tennengebirges und in anderen Arealen der Nördlichen Kalkalpen. Arb. aus d. Institut f. Geographie d. Univ. Salzburg, 10, 182 S., Salzburg.
- HAMISH, A. McGowan, A., STURMAN, P. und OWENS, I.F. (1996): Aeolian dust transport and deposition by foehn winds in an alpine environment, Lake Tekapo, New Zealand. *Geomorphology*, 15, 135-146.
- HANAUER, J.E. (1893): Mud showers and their effect on building in Palestine. *Palestine Expl. Fund. Quart*, V 1893, 69-70.
- HANNOSCHÖCK, E., und BURGHARDT, W. (1999): Erprobung eines neu entwickelten Kunstrasen-Skelettfängers (KUNST-RA) zur Ermittlung des Staubeintrages in den Boden. *Mitt. Dtsch. bodenkdl. Ges.*, 91 (2), 1009-1012.
- HANTSCHEL, R., PFIRRMANN, T. und EISENMANN, T. (1989): Bodenökologische Charakterisierung von Waldschadensflächen im bayerischen Kalkalpenraum. *Mitt.Bodenkundl. Ges.*, 59 (1), 373-378.
- HARDEN, J.W. (1982): A quantitativ index of soil development from field description: Examples from a chronosequence in central California. *Geoderma*, 28/1, 1–28.
- HASENCLEVER, D. (1954): Bestimmung des Feinstaubgehaltes der Luft. Eine Übersicht über Meßgeräte und Meßverfahren. Chem.-Ing.-Techn., 26, 180-187.
- HAUER, H. (1950): Klima und Wetter der Zugspitze. Sonderdruck aus den Berichten des Dt. Wetterdienstes in der U.S. Zone. Bad Kissingen.
- HÄUSLER, W. (1992): Böden aus Kalkstein in der Südlichen Frankenalb. Mineralogische und chemische Eigenschaften als Ergebnis der Pedogenese. Dissertation, Fak. für Landwirtschaft und Gartenbau, TU München, 1992.
- HEIMSATH, A.M., DIETRICH. W.E., NISHIIZUMI, K. und FINKEL, R.C. (1999): Cosmogenic nuclides, topography, and the spatial variation of soil depth. *Geomorphology*, 27, 151-172.
- HELLDÉN (1974): Limestsone solution intensity in a karst area in lappland, northern Sweden. Geogr. Annaler, 55A, 185-196.
- HELLMANN, G. und MEINARDIUS, W. (1901): Der große Staubfall vom 9. bis 12. März 1901 in Nordafrika, Süd- und Mitteleuropa. Abh. des königlichen preußischen Meteorolog. Instituts, II (1), 93 S.
- HERA, U. (1997): Gletscherschwankungen in den Nördlichen Kalkalpen seit dem 19. Jahrhundert. Münchner Geogr. Abh., B25: 205 S.
- HERB, H. (1973): Schneeverhältnisse in Bayern. Schriftenreihe Bayer. Landesstelle f. Gewässerkunde, 12, 93 S.
- HERTER, W. (1990): Zur aktuellen Vegetation der Allgäuer Alpen: Die Pflanzengesellschaften des Hintersteiner Tales. *Diss. Bot.*, 147, 124 S.
- HIEMSTRA, C.A., LISTON, G.E. und REINERS, W.A. (2002): Snow redistribution by wind and interactions with vegetation at upper treeline in the Medicine Bow Mountains, Wyoming, U.S.A. Arctic and Alpine Res., 34 (3), 262-273.

- HIRTLREITER, G. (1992): Spät- und postglaziale Gletscherschwankungen im Wettersteingebirge und seiner Umgebung. *Münchner Geogr. Abh.*, B 15, München.
- HÖLLERMANN, P. (1964): Rezente Verwitterung, Abtragung und Formenschatz in den Zentralalpen am Beispiel des oberen Suldentals (Ortlergruppe). Z. Geomorph. N.F., Suppl.-Bd. 4, 257 S.
- HUTTL, C. (1997): The influence of different soil types and associations of vegetation on limestone solution in a highmountainous region (Zugspitzplatt, Wettersteingebirge, Germany). *Ecologie*, 29 (1-2), 83-87.
- HÜTTL, C. (1999): Steuerungsfaktoren und Quantifizierung der chemischen Verwitterung auf dem Zugspitzplatt (Wettersteingebirge, Deutschland). Münchner Geogr. Abh., B 30, München.
- HÜTTL, C., RÖGNER, K. und SASS, O. (1998): Erste Ergebnisse von Studien zu Verwitterungsprozessen in den Kalkhochalpen (Wetterstein- und Karwendelgebirge) unter besonderer Berücksichtigung der Karbonatlösung und der klastischen Schuttbildung. *Mitt. Österr. Geogr. Ges.*, 137, 1-75.
- ISSS-ISRIC-FAO (1998): World Reference Base for Soil Resources. FAO, World Soil Resources Report No. 84. Rome.
- ITAGI, K. und KOEUNUMA, A. (1962): Altitude distribution of fallout contained in rain and snow. J. Geophys. Res., 67, 3927-3933.
- Jaffe, D. und SNow, J. (2003): The 2001 Asian dust events: transport and impact on the surface aerosol concentration in the U.S. EOS, *transactions American geophysical Uni*on, 84 (46), 501-507.
- JAHN, R. (1995): Ausmaß äolischer Einträge in circumsaharischen Böden und ihre Auswirkungen auf Bodenentwicklung und Standorteigenschaften. Bd. 23. 213 Seiten.
- JANIK, V. und SCHILLER H. (1960): Charakterisierung typischer Bodenprofile der Gjaidalm. *Mitt. Österr. Bodenkdl. Ges.*, 4, 31-44.
- JASMUND, K. und LAGALY, G. (Hrsg.) (1990): Tonminerale und Tone: Struktur, Eigenschaften, Anwendung und Einsatz in Industrie und Umwelt. Darmstadt.
- JERZ H. und ULRICH R. (1966): Erläuterungen zur geologischen Karte von Bayern 1:25.000, Blatt Nr. 8533/8633 Mittenwald. München.
- JENNY, H. (1930): Hochgebirgsböden. In: Blanck, E.: Handbuch der Bodenlehre, 3, 25-61.
- KALLENBACH, H. (1966): Mineralbestand und Genese südbayerischer Lösse. Geol. Rundschau, 55, 582-607.
- KERSCHNER, H. (1982): Outlines of the climate during the Egesen advance (Younger Dryas, 11000-10000BP) in the Central Alps of the Western Tyrol, Austria. Z.f. Gletscherkunde u. Glazialgeologie, 16 (1980), 229-240.
- KHAN, H.D. (1960): Clay mineral distribution in some rendzinas, red-brown soils and terra rossas on limestones of different geological ages. *Soil Sci.*,90: 312-319.
- Kic (Kollmorgan Instruments Cooperation) (1990): Munsell Soll Colour Charts. Baltimore, USA.
- KNAPCZYK-HASEKE, H. (1989): Der Untersberg bei Salzburg. Die ober- und unterirdische Karstentwicklung und ihre Zusammenhänge. Ein Beitrag zur Trinkwasserforschung. Innsbruck.

- KNUTSON, E.O., SOOD, S.K. und STOCKHAM, J.D. (1977): Aerosol collection by snow and ice crystals. *Atmos. Env.*, 11, 395-402.
- KONNERT, V. (2004): Standortkarte Nationalpark Berchtesgaden. Forschungsberichte des Nationalparks Berchtesgaden, 49.
- KOSTER, E.A. und DIJKMANS, J.W.A. (1988): Niveo-aeolian deposits and denivation forms, with special reference to the Great Kobuk Sand Dunes, Northwestern Alaska. *Earth surface processes and landforms*, 13, 153-170.
- KREUTZER, K. und GROTTENTHALER, W. (1991): Terrestrische organische Bodenbildungen auf Fels- und Skelettsubstraten (O/C-Böden). Mitt. Dt. Bodenkdl. Ges., 66 (II), 815-818.
- KRIEG, W. (1969): Seichter Hochkarst am Hohen Ifen ein Beispiel von allgemeiner Bedeutung. 5. Int. Kongreß Speläol., Abh. 1 (34), 1-8.
- KRONBERG, G.I. und NESBITT, H.W. (1981): Quantification of weathering of soil chemistry and soil fertility. J. Sol. Sc., 32, 435-495.
- KUBIENA, W.L. (1944): Beiträge zur Bodenentwicklungslehre: der Kalksteinbraunlehm (Terra fusca) als Glied der Entwicklungsreihe der mitteleuropäischen Rendsina. Z. f. Bodenkunde und Pflanzenernährung, 35, 136-166.
- KUBIENA, W.L. (1953):Bestimmungsbuch und Systematik der Böden Europas. Stuttgart.
- KUBIENA, W.L. (1956): Zur Mikormorphologie, Systematik und Entwicklung der rezenten und fossilen Lößböden. *Eiszeit*alter und Gegenwart, 7, 102-112.
- KÜFMANN, C. (2003a): Erste Ergebnisse zur qualitativen Untersuchung und Quantifizierung rezenter Flugstäube in den Nördlichen Kalkalpen (Wettersteingebirge). *Mitt. Geogr. Ges. München*, 86, 59-85.
- KUFMANN, C. (2003b): Soil types and eolian dust in high-mountainous karst of the Northern Calcareous Alps (Zugspitzplatt, Wetterstein Mountains, Germany). Catena, 53, 211-227.
- KOMMEL, R. und PAPP, S. (1990): Umweltchemie Eine Einführung. Leipzig.
- KUGLER, H. (1974): Das Georelief und seine kartographische Modellierung. Dissertation B, Martin Luther-Universität Halle-Wittenberg 1974, 517 S.
- KUHLEMANN, J., TAUBALD, H., DUNKL, I. und FRISCH, W. (1999): Geochemistry of red clays in the Eastern Alps: Remnants of late Miocene soils? – *Tübinger Geowiss*. Arb., Reihe A, 52: 166.

LANCASTER, N. (1995): Geomorphology of desert dunes. London.

- LANCASTER, N. (2002): Flux of eolian sediments in the McMurdo dry valleys, Antarctica: A preliminary assessment. Arctic and Alpine Res., 34(3), 318-323.
- LANGENSCHEIDT, E. (1986): Höhlen und ihre Sedimente in den Berchtesgadener Alpen. Dokumente der Landschaftsentwicklung in den Nördlichen Kalkalpen. Forschungsberichte des Nationalparks Berchtesgaden 10.
- LATRIDOU, J.P. (1988): Recent advances in cryogenic weathering. In: M.J. Clark (Editors), Advances in periglacial geomorphology. Oxford University Press, London, pp. 249-260.

- LEHMANN, O. (1927): Das Tote Gebirge als Hochkarst. Mitt. Geogr. Ges. Wien, 70, 201-242.
- LEININGEN, W. von (1908-1912): Über Humusablagerungen in den Kalkalpen (Fortsetzung). Sonderdruck aus der Naturwissenschaftl. Zeitschrift f. Forst- u. Landwirtschaft, Heft 5, Jg. 7, 1-272.
- LEININGEN, W. von (1915): Über die Einflüsse von äolischer Zufuhr auf die Bodenbildung (mit besonderer Berücksichtigung auf die Roterde). Mitt. Geol. Ges. Wien, Heft 8, 1915.
- LEROY, S.D. (1981): Grain-size and moment measures: A new look at Karl Pearsons's idea on distributions. *Journal of Sedimentary Petrology*, 51, 0625-0630.
- LICHTENECKER, N. (1936): Die Rax. Geogr. Jahresber. a. Österr., XIII, 127 S.
- LITAOR, M.I. (1987): The influence of eolian dust on the genesis of alpine soils in the Front Range, Colorado. Soil Science, Society of American Journal, 51: 141-146.
- LITTMANN, T. (1991): Recent African dust deposition in West Germany – Sediment characteristics and climatological aspects. *Catena Suppl.*, 20, 57-73.
- LITTMANN, T. (1994): Immissionsbelastung durch Schwebstaub und Spurenstoffe im ländlichen Raum Nordwestdeutschlands. *Bochumer Geogr. Arb.*, 59, 135 S.
- LÖBNER, A. und NEHLS, H. (1957): Untersuchungsverfahren für die Bestimmung der in Niederschlagswassern enthaltenen Verunreinigungen. Schr. Reihe Ver. für Wasser-, Boden-, Lufthygiene, Bd. 12, Berlin.
- LOGIE, M. (1983) : Influence of roughness elements and soil moisture on the resistance of sand to wind erosion. *Catena*, Suppl. 1, 161-173.
- LUNDOVIST, J. und BENGTSSON, K. (1970): The red snow a meteorological and pollen analytic study of longtransported material from snowfalls in Sweden. *Geologiska Föreningens I Stockholm Förhandlingar*, 92, 288-301.
- MACHATSCHEK, F. (1924): Morphologische Untersuchungen in den Salzburger Kalkalpen. Ostalpine Formenstudien, I (4).
- MACLEOD, D.A. (1980): The origin of the red Mediterranean soils in Epirus, Greece. J. Soil Sc., 31, 125-136.
- MAIER, K.H. (1956): Aerosolfiltration mit Hilfe von Membranfiltern. Kolloid-Z., 146 (1/3).
- MAILANDER, R. und VEIT, H. (2001): Periglacial cover-beds on the Swiss Plateau: indicators of soil, climate, and landscape evolution during the Late Quaternary. *Catena*, 45 (4): 251-272.
- MASON, J.A., NATER, E.A., ZANNER, C. and BELL, J. (1999): A new model of topographic effects on the distribution of loess. *Geomorphology*, 28, 223-236.
- MAHANEY, W.C., SANMUGADAS, K., NORTH, Y., HANCOCK, R.G.V. (1996): Physical and geochemical analysis of a late glacial/Little Ice Age pedostratigraphic complex in the Zillertal Alps, Austria. Z. Geomorph. N.F., 40 (4): 447-460.
- MATTSSON, J.O. und NIHLÉN, T. (1996): The transport of Saharan dust to southern Europe: a scenario. J. of Arid Environments, 32, 111-119.
- McKEAGUE, J.A. und DAY, J.H. (1966): Dithionite- and oxalateextractable Fe and AI as aids in differentiating various classes of soils. *Can. J. Soil.Sci.*, 46: 13-22.

- MCKENNA NEUMAN, C. (1993): A review of aeolian transport processes in cold environments. *Progresses on physical* geography, 17, 137-155.
- McTainsh, G.H. und WALKER, P.H. (1982): Nature and distribution of Harmattan dust. Z. Geomorph. NF, 26, 417-436.
- McTAINSH, G.H. und LYNCH, A.W. (1996): Quantitativ estimates of the effect of climatic change on dust storm activity in Australia during the Last Glacial Maximum. –Special Issue: Response of Aeolian Processes to global change edited by N. LANCASTER, Geomorphology 17, (1-3), 263–271.
- MCTAINSH, G.H., NICKLING, W.G., LYNCH, A.W. (1997): Dust depositon and particle size in Mali, West Africa. Catena, 29, 307-322.

MELDAU, R. (1956): Handbuch der Staubtechnik, Düsseldorf.

- MILLER, C.D. und BIRKELAND, P.W. (1974): Probable preneoglacial age of the type Temple Lake moraine, Wyoming: Discussion and additional relative-age data. Arctic and Alpine Research, 6, 301-306.
- MILLER, H. (1962): Zur Geologie des westlichen Wettersteinund Mieminger Gebirges. Inaugural-Dissertation 1962, München.
- MISHRA, V.K. (1982): Genesis and classification of soils derived from Hauptdolomit (Dolomites) in Kalkalpen and effects of soil type and humus form on some features of forest natural regeneration. Dissertation, Forstwissenschaftl. Fak. Ludwig-Maximilians Universität München, 1982.
- MIZOTA, C., KUSAKABE, M. und NOTO, M. (1988): Eolian contribution to soil development on Cretaceous limestones in Greece as evidence by oxygen istope composition of quartz. *Geochemical Journal*, 22, 44-46.
- MEYER, B. (1979): Die Entcarbonatisierungsrötung als bodengenetischer Teilprozeß. Mitt. Dt. Bodenkundl. Ges., 28, 705-708.
- MORALES, C. (ed.) (1979): Saharan dust mobilization, transport deposition. SCOPE Report 14, 297 pp. Chichester.
- MORESI, M. und MONGELLI, G. (1988): The relation between terra rossa and the carbonate-free residue of the underlying limestones and dolostones in Apulia. *Clay. Mineralogy*, 23, 439-446.
- MÜCHER, H.J. und DEPLOEY, J. (1977): Experimental and micromorphological investigations of erosion and redeposition of loess by water. *Earth surface processes and landforms*, 2, 117-124.
- MÜCKENHAUSEN, E. (1982): Einführung zur Inventur des Paläoböden in der Bundesrepublik Deutschland. Geol. Jb., F14, 5-13.
- MüLLER, M. (1986): Soils above the timberline in the upper Engadin. *Mitt. dt. bodenkdl. Ges.* 48, 107-120.
- MÜLLER, M. und PEYER, K. (1986): Profile Kloster: Raw humus layer on dolomitic Cobbler Talus. *Mitt. dt. bodenkdl. Ges.* 48, 81-90.
- MUNN, L.C. und SPACKMAN, L. K. (1990): Origin of silt-enriched alpine surface mantles in India Basin, Wyoming. *Soil Science Society of America Journal*, 54, 1670-1677.
- NEUMEISTER H. (1965): Probleme der Nördlichen Lößgrenze. Leipziger Geogr. Beitr., 1965, 137-143.

- NEUWINGER, I. (1963): Beziehungen zwischen Relief, Planzendecke und Boden and der Obergrenze des Zirben-Lärchenwaldgürtels. Ber. d. naturwiss. med. Ver. in Innsbruck, Bd. 53, Festschrift H. GAMS, 235-255.
- NEUWINGER, I. (1970): Böden der subalpinen und alpinen Stufe in den Tiroler Alpen. *Mitt. Ostalp.-dinarische Ges. für Ve*getationskunde, 11, 135-150.
- NEUWIRTH, R. (1962): Der Staubfall vom 17.4.1962. Staub, 22, 412-413.
- NICKLING, W.G. (1978): Eolian sediment transport during dust storms: Slims River Valley, Yukon Territory. Canadian J. of Earth Science, 15, 1069-1084.
- NIHLÉN, T. (1990): Eolian processes in southern Scandinavia and the Mediterranean Area. Meddelanden Fran Lund Universitets Geografiska Instituttioner Avhandlingar 110, Lund University Press.
- NIHLÉN, T. und MATTSSON, J.O. (1989): Studies on eolian dust in Greece. Geogr. Annaler, 71 A, 269-274.
- NIHLÉN, T. und OLSSON, L. (1995): Influence of eolian dust on soil formation in the Aegean area. Z. Geomorph. N.F., 39 (3): 341-361.
- NIHLEN T. und SOLYOM, Z. (1986). Dust storms in the Mediterranean Area. Geol. Foren. Stock. Forhand., 108: 235-242.
- NIHLEN, T. und SOLYOM, Z. (1989): Possible Influence of Saharan dust on soils in Crete. *Geol.Foren. Stock.Forhand.*, 111, 25-33.
- OFFER, Z.Y. und GOOSSENS, D. (1995): Wind tunnel experiments and field measurements of aeolian dust deposition on conical hills. *Geomorphology*, 14, 43-56.
- OLSZEWSKY N. (2001): Rezenter Eintrag von Flugstäuben am Zugspitzplatt (Wettersteingebirge). Unveröffentl. Diplomarbeit am Inst. für Geographie der LMU München.
- ORTIZ, I., SIMÓN, M., DORRONSORO, C., MARTIN, F. und GARCIA, I. (2001): Soil evolution over the Quaternary period in a Mediterranean climate (SE Spain). *Catena*, 48 (3), 131-148.
- Ortlam, D. (1980): Erkennung und Bedeutung fossiler Bodenkomplexe in Locker- und Festgesteinen. Geol. Rundschau, 69, (2).
- OST, K. und MIRISCH G. (1955): Über Messungen von Staubniederschlägen in der Umgebung eines größeren Kraftwerkes auf Steinkohlebasis. *Mitt. Verein. Großkesselbesit*zer, Nr. 37.
- OSTROM, M.E. (1961): Separation of clay minerals from carbonate rocks using acid. J. Sedim. Petrol., 31, 123-129.
- OWEN, L.A., WHITE, B.J., RENDELL, H. und DERBYSHIRE, E. (1992): Loessic silt deposits in the Western Himalayas: their sedimentology, genesis and age. *Catena*, 19, 493-509.
- PALLMANN, H. (1948): Die Systematik der Böden; der Vorschlag eines Bodensystems. In: Pallmann, H., Richard, F. und Bach, R. (1948): Über die Zusammenarbeit von Bodenkunde und Pflanzensoziologie. 10^e Kongreß Int. Verv. Forstl. Versuchsanstalten. Zürich.
- PALMQUIST, R. (1979): Geologic controls on doline characteristics in mantled karst. Z. Geomorph. N.F., Suppl.-Bd.32, 90-106.
- Pécsi, M. und RICHTER G. (1996): Löss: Herkunft Gliederung – Landschaften. Z. Geomorph. N.F., Suppl.-Bd.98, 391 S.

- Pécsi-DoNATH, É (1985): On the mineralogical and pedological properties of the younger loess in Hungary. In: Pécsi, M. (ed.): Loess and the Quaternary. Chinese and Hungrian case studies. Budapest, 93-104.
- PEINEMANN N. und GARLEFF, K. (1981): Sedimentologische und mineralogische Merkmale von Lößen und Lößderivaten in Franken. *Eiszeitalter und Gegenwart*, 31, 177-186.
- PETIT, J.R., BRIAT, M. und ROYER, A. (1981) : Ice-age aerosol content from east Antarctic ice core samples and past wind strength. *Nature*, 293, 391-394.
- Péwé T.L. (ed.) (1981): Desert dust. Origin, characteristics and effects on Man. Geological Soc. of America Special Paper 186.
- Péwé, T.L., Péwé, E.A., Péwé, R.H., JOURNAUX, A. und SLATT, R.M. (1981): Desert dust: characteristics and rates of deposition in central Arizona, USA. *Geol. Soc. Am. Spec. Pap.*, 186, 169-190.
- PFEFFER K.-H. (1969a): Erfahrungsbericht über Korngrößenbestimmungen von Verwitterungsresiduen aus Karstgebieten. Notizblatt hess. Landesamt f. Bodenforschung, 97, 275-282.
- PFEFFER, K.-H. (1969b): Charakter der Verwitterungsresiduen im tropischen Kegelkarst und ihre Beziehung zum Formenschatz. Sonderdruck Geol. RS, 58, 1969.
- POSER, H. (Hrsg.) (1977): Formen, Formengesellschaften und Untergrenzen in den heutigen periglazialen Höhenstufen der Hochgebirge Europas und Afrikas zwischen Arktis und Äquator. Abh. Akad. Wiss. Göttingen, Math.-Phys.-Kl. 3 (31), 355 S.
- PRODI, F. und FEA, G. (1979): A case of transport and deposition of Saharan dust over the Italian peninsula and southern Europe. *Journal Geophys. Res.*, 84 (C11), 6951-6960.
- PYE, K. (1984): Loess. Progress in Physical Geography, 8, 176-217.
- PYE, K. (1987): Aeolian dust and dust deposits. London.
- PYE, K. (1992): Aeolian dust transport and deposition over Crete and adjacent parts of the Mediterranean Sea. Earth Surface Processes and Landforms, 17, 271-288
- RAPP, A. (1984): Are terra rossa soils in Europe eolian deposits from Africa? *Geol.Foren. Stock.Forhand.*, 105, 161-168.
- RAPP, A. und NIHLEN T. (1986): Dust storms and eolian deposits in North Africa and the Mediterranean. *Geoökodynamik*, 7, 41-62.
- RAST U. (1991): Sedimentpetrographische Untersuchungsmethoden am Bayerischen Geologischen Landesamt. Teil 1: Schwermineralanalyse. Geol. Bavarica, 96, 223-228.
- RAST U. (1993): Sedimentpetrographische Untersuchungsmethoden am Bayerischen Geologischen Landesamt. Teil 3: Tonmineralanalyse. *Geol. Bavarica*, 97, 177-192.
- RATHJENS, C. (1939): Geomorphologische Untersuchungen in der Reiteralm und im Lattengebirge im Berchtesgadener Land. *Mitt. Geogr. Ges. Mü*, 32, 15-89.
- REHEIS, M.C. und KIHL, R. (1995): Dust deposition in southern Nevada and California, 1984-1989: Relations to climate, source area and source lithology. *Journal of Geophys. Res.* 100 (D5), 8893-8918.

- REHFUESS, K.E. (1981): Waldböden: Entwicklung, Eigenschaften und Nutzung. Hamburg.
- RENDELL, H.M. (1989): Loess deposits during the Late Pleistocene in Northern Pakistan. Z.Geomorph.N.F., Suppl.-Bd. 76, 247-255.
- RETALLACK, G.J. (1991): Soils of the past an introduction to paleopedology. London.
- REYNOLDS, D.C. (1971): Clay mineral formation in an alpine environment. Clays and Clay Minerals, 19, 361-374.
- REIS, O. (1911): Erläuterungen zur Geologischen Karte des Wettersteingebirges, I. Teil. Sonderdruck aus dem Geognostischen Jahresheften 1910, XXIII, München.
- REISIGL, H. und KELLER, R. (1987): Alpenpflanzen im Lebensraum. Stuttgart.
- ROBBINS, C. und KELLER, W.D. (1952): Clay and other non-carbonate minerals in some limestones. J. Sedimentary Petrology, 22 (3), 146-152).
- RODENKIRCHEN, H. (1986): Terra fusca-Braunerde and Eisen-Humus-Podsol in the calcarous Alps in Bavaria – Bayrischzell/Kloaschautal. Mitt. Dtsch. Bodenkdl. Ges., 46, 35-48.
- Rozycki, S.Z. (1967): Le sens des vents portant la poussière de loess, à la lumière de l'analyse des formes d'accumulation du loess en Bulgarie et en Europe Centrale. Revue de Géomorphologie Dynamique, 2ème série, 9, 1-9.
- RUHE, R.V. (1984): Loess-derived soils, Mississippi Valley region: I. Soll-sedimentation system. Soil Sci. Soc.Am.J., 48, 859-863.
- SAITNER, A. (1989): Die Vegetation des Dammkars bei Mittenwald (Karwendelgebirge) und ihre Beeinflussung durch den Tourismus. Unveröff. Diplomarbeit TU München-Weihenstephan, 1989.
- SAITNER, A. und PFADENHAUER, J. (1989): Die Vegetation im Bereich des Dammkars bei Mittenwald und ihre Beeinflussung durch den Tourismus. *Jb. Verein z. Schutze der Bergwelt*, 57, 195 S.
- Sass, O. (1998): Die Steuerung von Steinschlagmenge und verteilung durch Mikroklima, Gesteinsfeuchte und Gesteinseigenschaften im westlichen Karwendelgebirge (Bayerische Alpen). Münchner Geogr. Abh., Reihe B 29, 175 S.
- SCHEFFER, F., WELTE, D. und MEYER, B. (1960): 2. Fraktur, Nichtcarbonatgehalt und spezifische Auflösungsgeschwindigkeit des Kalkgesteins als bestimmende Größe der Bodenentwicklungsgeschwindigkeit. Z. Pflanzenernährung u. Bodenkunde, 98, 1-16.
- SCHEFFER, F., MEYER, B. und GEBHARDT, H. (1966): Pedochemische und kryoklastische Verlehmung (Tonbildung) in Böden aus kalkreichen Lockersedimenten (Beispiel Löß). Z. Pflanzenernähr., Düng., Bodenkunde 114, 77-89.
- SCHEFFER, F., SCHACHTSCHABEL, P., BLUME, H.-P., BRÜMMER, G., SCHWERTMANN, U., RENGER, W.R. und STREBEL O. (1989): Lehrbuch der Bodenkunde. Stuttgart.
- SCHLICHTING E. (1963): Zur Deutung von "Ortstein"-Böden im subarktisch-alpinen Gebiet. Z. Pflanzenernähr., Düng., Bodenk., 100, 121-126.

- SCHLICHTING, E. und BLUME, H.P. (1962): Art und Ausmaß der Veränderungen des Bestandes mobiler Oxide in Böden aus jungpleistozänem Geschlebemergel und ihren Horizonten. Z. Pflanzenernähr., Düng., Bodenk. 96: 144-156.
- SCHLICHTING, E., BLUME, H.-P. und STAHR, K. (1995): Bodenkundliches Praktikum. Blackwell, Wien.
- SCHLOTT, P. (1997): Die Böden der subalpinen und alpinen Stufe im Bereich des Dammkars bei Mittenwald und ihr Beitrag zur Verwitterung. Unveröffentl. Diplomarbeit, LMU München 1997.
- SCHMIDT, K.G. und GIES HEIDERMANN, A. (1959): Untersuchung von Staubproben mit dem Phasenkonstrastmikroskop insbesondere bei Verwendung von Membranfiltern. *Staub*, 19, 413-416.
- SCHMIDTLEIN, S. (2000): Aufnahme von Vegetationsmustern auf Landschaftsebene. Forschungsberichte des Nationalparks Berchtesgaden Bd. 44.
- SCHNEIDER, H. (1954): Die sedimentäre Bildung von Flußspat im Oberen Wettersteinkalk der nördlichen Kalkalpen. Abh. Bayer. Akad.Wiss., math.-naturw. Klausur, N.F., 66, 1-37.
- SCHONHALS, E. (1953): Gesetzmäßigkeiten im Feinaufbau von Talrandlössen mit Bemerkungen über die Entstehung des Lösses. Eiszeitalter + Gegenwart, 3, 19-36.
- SCHONHALS, E. (1955): Kennzahlen für den Feinheitsgrad des Lösses. Eiszeitalter + Gegenwart 6, 133-147.
- SCHÖNHALS, E. (1957): Späteiszeitliche Windablagerungen in den Nördlichen Kalkalpen und die Entstehung von Buckelwiesen. Natur und Volk, 87, 317-328.
- SCHÖNHALS E. (1960): Spät- und nacheiszeitliche Entwicklungsstadien von Böden aus äolischen Sedimenten in Westdeutschland. – 7th Intern. Congress. Soil Science, Madison, Wisconsin, (V 40), 283-290.
- SCHONHALS, E. und POETSCH T.J. (1976): Körnung und Schwermineralbestand als Kriterien für eine Deckschicht in der Umgebung von Seefeld und Leutasch (Tirol). *Eiszeitalter und Gegenwart*, 27, 134-142.
- SCHUBERT, W. (1963): Die Seslaria varia-reichen Pflanzengesellschaften in Mitteldeutschland. Feddes Repertorium, Beiheft 40, 71-199.
- SCHWERTMANN, U. (1959): Die fraktionierte Extraktion der freien Eisenoxide in Böden, ihre mineralogischen Formen und ihre Entstehungsweisen. Z. Pflanzenern., Düng., Bodenk. 84, 194-204.
- SCHWERTMANN, U. (1966): Inhibitory effect of soil organic matter on the crystallization of amorphous ferric hydroxide. *Natur*, 212, 645-646.
- SCHWERTMANN, U. (1985): The effect of pedogenic environments on iron oxide minerals. Adv. Soil Sci, 1, 171-200.
- SCHUTZ, L. (2004): Mitteilung der DFG-Forschergruppe zur Untersuchung des Einflusses von Saharastäuben auf das globale Klima.
 - http://idw-online.de/public/zeige_pm.html?pmid=76189.
- SCHWIKOWSKI, M., SEIBERT, P., BALTENSPERGER, U. und GÄGGLER, H.W. (1995): A study of an outstanding Saharan dust event at the high-alpine site Jungfraujoch, Switzerland. Atm. Environment, 29 (15), 1829-1842.

- SCOTT, S.R. (2000): The Cantor dust model for discontinuity in geomorphic process rates. *Geomorphology*, 5, (1-2), 185-194.
- SCRIVEN R.A. und FISHER B.E.A. (1975a): The long range transport of airborne material and its removal by deposition and washout I: general considerations. *Atm. Environment*, 9, 49-58.
- SCRIVEN, R.A. und FISHER, B.E.A. (1975b): The long range transport of airborne material and its removal by deposition and washout II: the effect of turbulent diffusion. *Atm. Environment*, 9, 59-68.
- SEVINK, J., VERSTRATEN, J.M. und JONGEJANS, J. (1998): The relevance of humus forms for land degradation in Mediterranean mountainous areas. *Geomorphology*, 23 (2-4), 285-292.
- SHAO, Y., RAUPACH, M.R. und FINDLATER, P.A. (1993): Effect of saltationbardment on the entrainment of dust by wind. J. Geophysical Research, 98, 12719-12726.
- SIEBERTZ, H. (1982): Die Bedeutung des Feinheitsgrades als geomorphologische Auswertungsmethode. Eiszeitalter und Gegenwart, 32, 81-91.
- SINGH, U.B., GREGORY, J.M., WILSON, G.R., PETERSON, R.E. und FEDLER, C.B. (1992): Climatic change effects on wind erosion. Am. Soc. Agri. Eng. International Summer Meeting, Charlotte, North Carolina, Paper 922050.
- SKOWRONEK, A. (1978): Untersuchungen zur Terra rossa in Eund S-Spanien – ein regionaler Vergleich. Würzburger Geogr. Arb. 47.
- SMALLEY, I.J. und SMALLEY, V. (1983): Loess material and loess deposits: formation, distribution and consequences. In: Brookfield, M.E. und Ahlbrandt, T.S. (Editors): Eolian Sediments and Processes. Amsterdam, pp. 51-68.
- SMETTAN, H.W. (1981): Die Pflanzengesellschaften des Kaisergebirges / Tirol. Jb. Ver. z. Schutze d. Bergwelt, 46, 231 S.
- SMOLIKOVA L. und LOZEK, V. (1962): Zur Alterfrage der mitteleuropäischen Terrae calcis. *Eiszeitalter und Gegenwart*, 13, 157-177.
- Solar, F. (1964): Zur Kenntnis der Böden auf dem Raxplateau. Mitt. Österr. Bodenkdl. Ges. Wien, 8: 1-14.
- STAHR, K., JAHN, R., HURTH, A. und GAUER, J. (1989): Influence of eolian sedimentation on soil formation in Egypt and Canary Island deserts. *Catena Suppl.*, 14: 127-144.
- STETLER, L.D., und GAYLORD, D.R. (1996): Evaluating eolianclimatic interactions using a regional climate model from Hanford, Washington (USA). *Geomorphology*, 17 (1-3), 999-1113.
- STICHER, H. BACH, R., BRUGGER, H. & VOEKT, U. (1975): Flugstaub in vier Böden aus Kalk, Dolomit und Serpentin (Schweizer Jura und Schweizer Alpen). Catena, 2, 11-22.
- STINGL H. (1969): Ein periglazialmorphologisches Nord-Süd-Profil durch die Ostalpen. Göttinger Geogr. Abh., 49, 239 S., Göttingen.
- STORCH, M. (1983): Zur floristischen Struktur der Pflanzengesellschaften in der Waldstufe des Nationalparks Berchtesgaden und ihrer Abhängigkeit vom Standort und der Einwirkung des Menschen. Diss. Fak. Biol. Univ. München, 406 S.

- STORCH und SEIDENSCHWARZ (1996): Vegetationskarte Nr. 6 des Nationalparkplans 2001. Berchtesgaden.
- SWITHINBANK, C. (1950) : The origin of dirt cones on glaciers. J. of Glaciology, 1, 461-465.
- SZAFER, W. (1924): Zur soziologischen Auffassung der Schneetälchenassoziationen. Veröff. Geobot. Inst. Rübel, Zürich, 1, 300-310.
- THALHEIM, K. (1994): Mineralogisch-granulometrische Untersuchungen an Deckschichten im Osterzgebirge. Mitt. Dtsch. Bodenkdl. Ges., 74; 35-38.
- THALHEIM, K. und FIEDLER H.J. (1990): Merkmale für äolischen Einfluß in den känozoischen Deckschichten des Osterzgebirges (DDR). Chem. Erde 50, 147-154.
- THIEDIG, F. (1970): Verbreitung, Ausbildung und stratigrapische Einstufung neogener Rotlehme und Grobschotter in Ostkärnten (Österreich). *Mitt. Geol.-Paläont. Inst. Univ. Hamburg* 39, 97-116.
- THORN, C.E. und DARMODY, R.G. (1980): Contemporary eolian sediments in the alpine zone, Colorado Front Range. *Physical Geography*, 1, 162-171.
- THORN, C.E. und DARMODY, R.G. (1985): Grain-size distribution of the insoluble component of contemporary eolian deposits in the alpine zone, Front Range, Colorado, USA. *Arctic and Alpine Res.*, 17, 433-442.
- TRIBUTH, H. (1990): Die Tonmineralentwicklung in Abhängigkeit von der Bodengenese. Mitt. Dtsch. Bodenkdl. Ges., 62, 153-156.
- TRIBUTH, H. und LAGALY, G. (Hrsg. 1991): Identifizierung und Charakterisierung von Tonmineralen. Berichte der Dt. Ton- und Tonmineralgruppe (DTTG), 162 S.
- TROLL, C. (1944): Strukturböden, Solifluktion und Frostklimate der Erde. Geol. Rundschau, 34, 545-694.
- TROLL, C. (1973): Rasenabschälung (turf exfoliation) als periglaziale Bodenabtragung. Z. Geomorph. N.F., Suppl.-Bd. 17, 1-32.
- TSCHIERSCH, J., HIETEL, B., SCHRAMEL, P. und TRAUTER, F. (1990): Saharan dust at Jungfaujoch. J. of Aerosol Science, 21 (Suppl.1), 357-360.
- URBAN, R. (1991): Die Pflanzengesellschaften des Klammspitzkamms im Naturschutzgebiet Ammergebirge. Ber. Bayer. Bot. Ges. Mü, 62 (3).
- VALENTIN, J. (1902): Der Staubfall vom 9. bis 12. März 1901. Sitzungsbericht der kaiserlichen Akademie der Wissenschaft in Wien. *Mathematisch-naturwissenschaftl. Classe*, CXI, Abt.IIa, 50 S.
- VAN HOUTEN, F.B. (1953): Clay minerals in sedimentary rocks and derived soils. American J. of Science, 215, 61-82.
- VANMAERCKE-GOTTIGNY, M.C. (1981): Some geomorphological implications of the cryoaeolian deposits in Western Belgium. Biuletyn Peryglacjalny, 28, 103-114.
- VARRICA, D., DONGARRA, G., SABATINO, G., MONNA, F. (2003): Inorganic geochemistry of roadway dust from the metropolitan area of Palermo, Italy. *Environmental Geology*, 44, 222-230.
- VEIT, H. (1988); Fluviale und solifluidale Morphodynamik des Spät- und Postglazials in einem zentralalpinen Flußeinzugsgebiet (südliche Hohe Tauern, Osttirol), Bayreuther Geowiss. Arb., 13, 167 S., Bayreuth.

- VEIT, H. und HÖFNER, T. (1993): Permafrost, gelifluction and fluvial sediment transfer in the alpine/subnival ecotone, Central Alps, Austria: present, past and future. Z. Geomorph. N.F., Suppl.-Bd. 92, 71-84.
- VEREIN DEUTSCHER INGENIEURE (1971a): Bestimmung des Partikelförmigen Niederschlags mit dem Bergerhoffgerät (Standardverfahren). VDI 2119, Blatt 2, VDI-Verlag, Düsseldorf.
- VEREIN DEUTSCHER INGENIEURE (1971b): Bestimmung des Partikelförmigen Niederschlags mit dem Hibernia – und Löbner-Liesegang-Gerät (Standardverfahren). VDI 2119, Blatt 3, VDI-Verlag, Düsseldorf.
- VõLKEL, J. (1991a): Staubsedimentation im nordafrikanischen Sahel – Herkunft und Auswirkung auf die Landschaftsökologie eines semiariden Großraumes. Z. Geomorph. N.F., Suppl.-Bd. 89, 73-85.
- Völkel, J. (1991b): Bodentypen und -genese auf jungpleistozänen Deckschichten im Bayerischen Wald. Mitt. Dtsch. Bodenkdl, Ges., 66/II, 877-880.
- Völkel, J. (1994): Zur Frage der Merkmalcharakteristik und Gliederung periglazialer Deckschichten am Beispiel des Bayerischen Waldes. *Peterm. Geogr.* Mitt., 138, 195-206.
- Völkel, J. (1995): Periglaziale Deckschichten und Böden im Bayerischen Wald und seinen Randgebieten. Z. Geomorphologie, N.F., Suppl.-Bd. 96, 301 S.
- VÖLKEL, J. und RAAB. T. (1999): Zur Differenzierung periglazialer, glazigener und kolluvialer Sedimente im Hangrelief von Mittel- und Hochgebirgen. Zentralblatt für Geol. Paläontologie, Teil I, (5-6), 289-304.
- WAGENBACH, D. (1981): Pilotstudie zur Aerosoldeposition auf einer hochalpinen kalten Firndecke. Ph.D. Thesis, University of Heidelberg, Heidelberg FRG.
- WAGENBACH, D. und GEIS, K. (1989): The mineral dust record in a high altitude alpine glacier (Colle Gnifetti, Swiss Alps). In: Leinen, M. und Sarntheim, M. (eds.), Paleoclimatology and Paleometeorology: modern and past patterns of global atmospheric transport, 543-564.
- WASHBURN, A.L. (1979): Geocryology. A survey of periglacial processes and environments. 406 S. London.
- WARREN, A. (1979): Aeolian Processes. In: Embleton, C. und Thornes, J. (eds.), Process in Geomorphology, 325-351, London.
- WEINGARTNER, H. (1983): Geomorphologische Studien im Tennengebirge, Salzburg. Arbeiten aus dem Institut f. Geogr. d. Univ. Salzburg, Nr. 9. Salzburg.
- WEISE, O.R. (1983): Das Periglazial. Stuttgart.
- WEISSHAAR, R., SCHÄFER, J., TOMADIN, L. und WAGENBACH, D. (1999): Aeolian sediment chronology recorded in ice cores from Monte Rosa summit range. *Tübinger Geowissen*schaftl. Arb., 52 (Serie A), 67 S.
- WELLBURN, A.R. (1997): Luftverschmutzung und Klimaänderung. Auswirkungen auf Flora, Fauna und Mensch. Berlin.
- WETTERAMT München (Hrsg.) (1963-1995; 2002; 2003): Berichte des Dt. Wetterdienstes, München.
- WEYL, R. (1952): Zur Frage der Schwermineralverwitterung in Sedimenten. Erdöl u. Kohle 5, 29-33.

- WILSON, M.J. (ed. 1987): A handbook of determinative methods in clay mineralogy. New York.
- WINDOM, H.L. (1969): Atmospheric dust records in permanent snowfields: implications to marine sedimentation. Geol.Soc. of Am. Bull., 80, 761-782.
- WINKLER V. HERMADEN, A. (1945): Geologisches Kräftespiel und Bodenwirtschaft in den deutschen Alpen. Sonderdruck aus dem Neues Jb. Für Mineralogie, Bd. 89, Abt. B, 45-100.
- WÖLFEL, U. (1975): Bodenkundlich-morphologische Untersuchungen an einem Buckelwiesenvorkommen im Mangfallgebirge. Geogr. Helv., 30 (1), 9-16.
- WUNSCHE, B. (1997): Der Einfluß von Boden und Vegetation auf die Lösungsverwitterung im Wettersteingebirge. Unveröffentl. Diplomarbeit am Institut für Geographie, LMU München.
- YAALON, D.H. und GINZBOURG, D. (1966): Sedimentary characteristics and climatic analysis of easterly dust storms in the Negev (Israel). Sedimentology, 6, 315-332.
- YAALON, D.H. und DAN, J. (1974): Accumulation and distribution of loess-derived deposits in the semi-desert and desert fringe areas of Israel. Z. Geomorph., Suppl.-Bd. 20, 91-105.
- YAALON, D.H. und GANOR, E. (1979): East Mediterranean trajectories of dust-carrying storms from the Sahara and Sinai. In: MORALES, C. (ed.), Saharan dust, Chichester, 187-193.
- ZECH, W. und NEUWINGER, I. (1974): Podsolbildung aus kalkreichen Substraten. Beobachtungen in den Tiroler Kalkalpen bei Seefeld. Forstwiss. Centralblatt, 93, 179-191.
- ZECH, W. und Wölfel, U. (1974): Untersuchungen zur Genese der Buckelwiesen im Kloaschautal. Forstwiss. Centralblatt, 93 (3), 137-155.
- ZECH, W. und VOELKL, W. (1979): Beitrag zur bodensystematischen Stellung kalkalpiner Verwitterungslehme. *Mitt. Dt. Bodenkdl.* Ges., 29, 661-668.
- ZECH, W., WILKE, B.M., KÖGEL, I., HAIDER, K., UND SCHULTEN, H.-R. (1986): Tangelrendzina und Moderrendzina. *Mitt. dt.* bodenkdl. Ges., 46, 23-34.
- ZEUNER, F.E. (1949) : Frost soils on Mount Kenya, and the relation of frost soils to aeolian deposits. J. Soil Sci., 1, 25-30.
- ZÖTTL, H. (1950): Die Vegetationsentwicklung auf Felsschutt in der alpinen und subalpinen Stufe des Wettersteingebirges. Dissertation an der LMU München 1950.
- ZÖTTL, H. (1951): Beitrag zur Ökologie alpiner Kalkschuttstandorte. Phyton, 4 (1-3), 160-175.
- ZöπL, H. (1966): Kalkböden der Alpen. Jb. d.V. z.Schutze der Alpenpflanzen u. Tiere, Bd. 31.
- ZWITTKOVITS, F. (1969);Alters- und Höhengliederung der Karren in den Nördlichen Kalkalpen. Geol. Rundschau, Bd. 58, H. 1, 378-395, Stuttgart. 71, Wien.

Abkürzungen:

Geographie, Geologie:

N, S, E, W	1.2	Himmelsrichtungen
		Nord (en), Süd (en), Ost (en), West (en)
mk	1	Muschelkalk (Anis)
rh	3	Reichenhaller Schichten (Anis)
rhk	1	Reichenhaller Kalk (Anis)
rhb	1	Reichenhaller Brekzien (Anis)
wk	- 3	Wettersteinkalk (Ladin)
dk	1	Dachsteinkalk (Nor)
go	- :	Gosau (Kreide)

Untersuchungsgebiete:

: Untersuchungsgebiet
: Westliche Karwendelgrube
: Östliche Karwendelgrube
: Reiteralpe
: Zugspitzplatt
: Karwendelgruben

Bodenkunde:

BR	: Braunerde
T-R	: Terra fusca-Rendzina
PO	: Polsterrendzina
POi	: initiale Polsterrendzina
PR	: Pechrendzina
S	: Sand
U	: Schluff
Т	: Ton
q	: Grob- z.B. gU (Grobschluff)
m	: Mittel-
Ŧ	: Fein-
R	: Residuum bzw. Residual-
VL	: Verlehmungsprodukt

Sonstige:

DWD	: Deutscher Wetterdienst
GLA	: Geologisches Landesamt
SK	: Staubfangkasten
Gew%	: Gewichtsprozent
Vol%	: Volumenprozent
Rel%	: Relativprozent

10 Anhang

10.1 Lage der Messeinrichtungen

Karte 1: Messeinrichtung und Catenen - Zugspitzplatt / Wettersteingebirge (Quelle: TK von Österreich 1:50.000, 8565, Innsbruck 1994; Erläuterung: ZP 1 bis ZP 4 = Lage der Meßstellen zur Staubquantifizierung (Staubfangkästen), Catena 1 bis 4 = Lage der Bodenprofile).

Karte 2: Messeinrichtung und Catenen - Karwendelgrube / Karwendelgebirge (Quelle: Topographische Karte 1:10.000, 8633, München 1983; Erläuterungen: KG 1 bis KG 3 = Lage der Staubfangkästen; SP 1 bis SP 2 = Lage der Schneeprofile).

Karte 3: Messeinrichtung und Bodenprofile - Karwendelgruben / Karwendelgebirge (Quelle: Topographische Karte 1:10.000, 8633, München 1983; Erläuterungen: P 1 bis P 16 = Lage der Bodenprofile in der Westl. Karwendelgrube; ÖK_P 5 bis P 7 = Lage der Bodenprofile in der Östl. Karwendelgrube).

Karte 4: Messeinrichtung und Catenen - Reiteralpe / Berchtesgadener Alpen (Quelle: TK von Österreich 1:50.000, 8565, Innsbruck 1994; Erläuterungen: RA 1 bis RA 4 = Lage der Meßstellen zur Staubquantifizierung (Staubfangkästen), Catenen 1 bis 5 = Lage der Bodenprofile).
10.2 Bodenprofile und Kenndaten

Zugspitzplatt - Profil 17: ZP_P17, Catena 3 (Knorrhütte-Plattsteig)

17.1 Pro	ofilbesch	reibung						2.0	-	-					
Bodenty	/p:			Lößl	Wett	erde au erstein	is äolisch kalk, Subl	er Deo yp 1	cks	schicht i	iber Re	sidualt	on aus	Lokalm	oräne
Klasse:				Brau	inerde	9									
Höhe / N	Veiauna /	Expositi	on	2000	m/ 10	°/ 156°	SSE								
Lage un	d Relief:	1		R/H	I: Unt	erhang	im Schich	kopfk	ars	st					
Vegetati	ionsgesell	schaft /		alpin	e Stuf	e, Sesle	erio-Carice	tum s	em	ıp.,					
Drofilmä	eyelalion.		_	2700	1				_		_				
Prolitina	tonugken.		_	S/CII	1/01	0/117/117		_	-	-					
Horizon	tioige.			AII/D	VI/DV	2/11/11)									
0 -	3cm	Ah		krüm	siv du ielig;	irchwurz	zelt; humo	s; sch	wa	ch karbo	nathaltig	g, skelet	ttfrei, gl	immerha	altig,
3-2	20cm	Bv1		durcl glimr	hwurz nerfül	elt, hum nrend; b	ios, Humu raun 7.5 Y	s z.T. R 4/4	in (Schlieren	; krüme	elig, kart	bonat- u	und skel	ettfrei;
20 -	35cm	Bv2		kaun skele	n durc ettfrei,	hwurzel ab 33ci	lt, schwacl m höher T	n hum on- bz	os; w.	krümelig Lehmgel) bis sul halt, glir	bpolyed nmerfüh	risch, ka nrend; b	arbonat- oraun 7.	und 5 YR 5/4
35 -	38cm	II T(IC)	()	nicht	durch	wurzelt	; schwach	humo	S;	subpolye	drisch,	karbona	athaltig,	Residu	alton
>38	Bcm	II T(IC))Cn	Mora	inense	chleier ü	iber komp	aktem	W	ettersteir	kalk		2.		
17.1.1 P	robenen	inahme													
Probe	1 611 9 6 6 6 1	Horiz	ont	Entna	hmetie	efe F	robennum	ner		0					
ZP 17/1	07.08.02	Ah	-		0-3cm	Z	ZP (Ah 0-30	m)							
ZP 17/2	07.08.02	Bv1		:	3-20cm	1 Z	ZP 4/1 (Bv1	3-20cr	m)	_					
ZP 17/3	07.08.02	Bv2		2	0-35cr	n Z	ZP (Bv2 20	-35cm)	1						
ZP 17/4	07.08.02	IIT		3	5-37cr	n Z	2P (II T 35-3	6cm)					_		
ZP 17/5	07.08.02	II TC	n	1	>37cm	2	ZP (II TCn >	36)							-
17.1.2 E	Bodenfark	anspra	che nac	h MUN	ISELI	Soil C	olor Char	t (200	0)						
Probe Nr.	Horizon	t [cm]		trock	en		14		na	ıß					
ZP 17/1	Ah	0-3		2.5 Y	3/1	1	very dark gr	ey	2.5	5 Y 2,5/1			black		
ZP 17/2	Bv1		3-20	7.5 Y	R 4/4	t	orown		7.5	5 YR 4/6			strong	brown	
ZP 17/3	Bv2	2	20-35	7.5 Y	R 5/4	t	orown		7.5	5 YR 4/6			strong	brown	
ZP 17/4	UT	3	35-37	7.5 Y	R 5/4	t	nwor		7.5	5 YR 4/6			strong	brown	
ZP 17/5	ll TCn		>37	10 YF	R 8/1	V	white		10	YR 8/2		_	very pa	ale brown	1
17.2. Bo	odenanaly (orngröße	/tische enverte	Werte ilung												
Probe			Kon	ngröße	n [µm]	in Gew.	-% (Feinbo	den bz	w, I	Lösungsre	esiduum	s LR des	anstehe	enden Ge	esteins)
Nr.	Horizont	[cm]	Skelett >2000	g 2000	S -630	mS 630-20	fS 0 200-63	gL 63-2	J 20	mU 20-6,3	fU 6,3-2	T <2	S	U	T
ZP 17/1	Ah	0-3	0	0.	6	2.1	2.6	21.	3	38.1	19.6	16.0	5.3	79.0	16.0
7P 17/2	Bv1	3-20	0		-	0.4	0.2	26	2	31.8	23.6	18.1	0.6	81.6	18.1
ZP 17/3	Bv2	20-35	0	0)	0,4	3,7	26,	4	37,4	21,0	11,7	3,7	84,8	11,7
ZP 17/4	II T	35-37	2	0)	0	0	13.	8	28,1	18,3	39,8	0	60,2	39,8
7P 17/5	II TCn	>37	Fels	0		8.3	3.7	0	13	23.6	35.9	28.5	12.0	59.5	28.5
17 2 2 P	odonnhu	ikalico	he India	00	-	010	1	1 -	-	2010	0010				
Probe	odenpity	Sinalise		Boo	lenphy (Verh	sikalisch ältniszał	e Indices nlen)			Charakte (st = star S= Sand	risierung k; sw = s ; U = Sc	g Bodena schwach hluff; T =	art ; mi = m : Ton; L :	ittel) = Lehm	
Nr.	Horizont	[cm]	U/T	T/U	U/S	U+T/S	mU/gU	fU/g	gU	Bod	enart	Bo	odenart- gruppe		Haupt- gruppe
ZP 17/1	Ah	0-3	4.9	0,2	14.9	17,9	1.8	0.9	9	mi toniae	rU	Let	mschlut	ff	U
ZP 17/2	Bv1	3-20	4.5	0.2	136	166	1.2	0.9	9	st tonige	U	To	onschluff		U
7P 17/3	Bv2	20-35	72	0.1	220	26.0	14	0.9	8	mi tonige	r11	let	mschlu	ff	Ū.
70 47/4	UT.	35-37	1,2	0.7	22,0	20,0	0.0	0,0	0	minshi	Face T	101	ablette		T
ZP 17/4	11 10-	-07	1,5	0,7	-	-	2,0	1,	5	mi schiut	iger I	S	chiumton		
ZP 17/5	II TON	>3/	2,1	0,5	4,9	7,3		-		schluffige	er L	Leł	nmschlu	H	U

Zugspitzplatt - Profil 17: ZP_P17, Catena 3 (Knorrhütte-Plattsteig)

T

17.2.3	Bodenchemische	Werte
Triking	Douchenenisene	AACUTC

17.2.3	Rode	ncn	emisch	e we	te					Connw	erle r	tes Fi	einbod	ens /l à	istinos	residuu	msli	2	-				
Probe				n	a 1	Ca	0.00	Cor		Sub	etanz	N		C/N	l n	ithionit	Evira	ktion		Ovala	-Evtr	T	Fe./
				(Ca	Cl ₂)		[%]	[%		[%]	514/12	[%	6]	UIN	AI		6] 6	Mn	-	Fr [9	80 6]		Fea
Nr.	Ho	rizont	[cm]	-	_		-	_			_			_					_			+	
ZP 17/1	Ah	-	0-3	5,	8	(0,2	8,3	3	14,3	3				0,38	3 1,	57	0,04	1	0,	50		0,32
ZP 17/2	Bv1		3-20	4,	9		0	4,4	8	7,7			1		0,26	5 1,	57	0,08	5	0,	54	15	0,34
ZP 17/3	Bv2		20-35	5,	4		0	3,1	9	5,4		-			0,34	1 1,	10	0,02	2	0,3	32		0,29
ZP 17/4	IIT		35-37	6.	4		2,5	6,8	4	11,8	}				0.3	5 1.	03	0.02	2	0.5	52		0,50
Probe				1			-		-	+	KAKe	ff (mn	nol/kal			1.3						-	
Nir	Ho	rizont	Inml	к	1	%]	Na	[%]	Mg	[%]	C	Ca	[%		AI	[%]	H+	[%]	Σ	KAK	E	Baser	n-
ZP 17/1	Ah	12011	0-3	0	+	0	0.82	0.5	4.05	2.7	145	5.49	95.	9 0	.48	0.3 0	.90	0.6	151	.74	Sall	99.1	1 [70]
	By1	-	3.20	0	+	0	1.81	18	2.36	24	94	20	94	8 0	30	04 0	62	0.6	qq	38		99.0	
ZP 17/2	001	-	20.25	0	+	0	1,01	1,0	1.05	2,4	04	00	05	2 0	42	0.5 0	EO	0,0	00	00	-	00,0	
ZP 17/3	BVZ	_	20-35	0		0	1,04	1,2	1,95	2,3	01	,00	95,	3 0	,43	0,5 0	00,1	0,7	00	0,0	-	90,0	
ZP 17/4		_	35-37	0,0	10	,04	2,60	1,6	5,56	3,4	750	5,02	94,	3 0	,40	0,2 0	0,77	0,5	165	,42		99,3	l?
17.3 N	linera	lana	lytische	e Wer	te																		
17.3.1	Rönt	gent	luoresz	enz-	Anal	yse	(RFA)						_							_		
		_	_						Hau	iptelen	nenig	ehalle	e [%]						_			-	_
Probe	SiO ₂	Ĩ	Al ₂ O ₃	Fe ₂ O ₃ Total	FeO		Fe ₂ O ₃		MnO	MgO	0	CaO	NazO	9	K2O	C.	P.O.	607	1	H2O	Loss on ignition	eum of	conc.
Ab	49.0	0	10.00	7 00	0	04	6 70	-	16	1.2	4	1 51	0.0	0	1.62	1.00	-	24	4.14		24.04	- 7	76 20
Bv1	43,9	8	17.58	8.19	0,	94 86	7.20	1).23	1,04		1,54	0,0	2	1.93	1,00		.17	318		15.07	8	34.50
Bv2	50,6	6	19,57	7,74	1,	91	5,56	(0,10	2,4	1	1,43	0,9	4	2,11	0,97	0	,24	2,81		13,17	8	36,47
IIT	41,7	0	20,46	7,13	1.	50	5,39	(0,10	2,28	8	1,87	0,6	5	1,99	0,87	0	,33	4,13	3 2	21,82	7	7,82
II Ch	<0,1	0 1	<0,10	0,07	<0	,10	-	-	Soure	2,00	u jo	obalte	loom]	20 1	<0,05	<0,05		0,02	0,34	14	+5,40	10	00,00
Probe	Ba	Ce	Co	Cr	Cu	Ga	La	Nb	Nd	Ni	F	b	Rb	SO3	S	Th		U	V	I Y	1	Zn	Zr
Ah	320	160	18	114	14	24	85	25	63	3 44	4	84	107	0,24	10	2 1	5	6	125	-	102	312	315
Bv1 Bv2	363	90	18	111	16	27	44	28	40	$\frac{36}{2}$	6	78	105	0,13	3 10	3 1	3 <	5	166		38	275	3//
II T	283	179	20	147	19	23	95	25	5 7	1 82	2	53	79	0,1	3 8	7 1	7 <	5	125		137	171	236
ll Cn	<50	<50	<10 <	:15 <	<10	<5	<15	<5	<10	<10) <1	10	<15	<0,10	5	5 <10	<	5	13	<5		28	<10
17.3.2	Geo	cher	nische	Indice	es					0.11										-			
	Tark	_	1.5.4				- 1-		Ge	ochen	nisch	e Indi	ces					-	. 1.4			1.	100
Probe	SiO ₂ Al ₂ O	3	FeO. Fe ₂ C)3 12	Ca Mg	0	Ca Ka	aO/ 0	Na ₂ C Al ₂ O)/ 3	K ₂ O/ Na ₂ C		CaO+1 Al ₂ O ₃	Va2O+	< ₂ 0/	SiO ₂ +	Al ₂ O	3 +Fe2	O3 0	CaO+ AgO	00	S	ir/Ba
By1	1	2,40	0	11	-	0.84	-	0,95	0,0	15	2,3	5	_	2,51		-	77.2	5	-	2,	60 60	+	0.28
Bv2		2,59	0	25	(0,59		0,68	0,0	05	2,2	4		2,48	-		77,9	17		3,	84		0,28
II T	1	2,04	0	,21	(0,82		0,94	0,0	03	3,0	6		2,62			69,2	9		4.	15		0,31
II Cn	L	(14).		-	2	6,92		-			-	-		24	_		-	_	1	55	,84		
17.3.3	Sch	Nerr	ninerale	e (Met	hod	le R	AST	1990,	1993	1	1.1 10		1.11	010	0.5	_				_	_		_
Droho	T	G		7	T	-	Gesa	An	Ktrum (Kornza	Di	6); F	raktion	но,1-0, НЫ	25mm	En+7c	-	Son	etine	0	Kor	neum	ame
Ah	1	15)	1	3		0	3	13	1	2		0	31	-	25		001	3		Nor	134	into
Bv1		64	1	0	0		0	19	0		0		0	0		27			0			11 2)	1
Bv2 3)	1.20	6	1 m	9	2		6	4	2		0		0	5		10		1.1	0			300	
H F	1	-		12	4	Roote	8 makter	0 m obev	1 Grand	t (her	0	auf 1	0	Fraktio	0.1.0	25000	_		0				
Probe	1	Z	T	R	- 1	An	perin	St	Grana	Di	An	d	Hbl	Takio	Ep+Z	0	Son	stige 1	Y		Kornsi	umme	e
Ah	100	1	4	0		4		16		3	0		39	-	31	-		4			10	8	
		0	0	0		25	1.	0		0	0		0		75			0			4	2)	
Bv1	-	0								0												0	

2) 3) Beachte schlechtere Statistik wegen geringer Kornpopulation! Korngröße <0,1mm

Zugspitzplatt - Profil 17: ZP_P17, Catena 3 (Knorrhütte-Plattsteig)

Probe	Relative	Tonminer	algehalte in de	er Fraktion <	0,002mm [Rel%]		Kommentar	
	ML _{illit} U	Illit 2)	Kaolinit 3)	Chlorit	ΣK+Ch	Gesamtmenge	Kristallisation	Quellfähigkeit
P 17/1 Ah	39	17	25	18	43	klein	gut	kaum
2P 17/2 Bv1	60	7	16,5	16,5	33	klein	gut	kaum
2P 17/3 Bv2	9	43	15	33	48	klein	gut	kaum
robe	Verteilung	sonstiger	Minerale					18
) Kaolinii (7 A	A-Mineral); Chic	Drit (7 A-IV	lineral)					
ione	Voncilding	sthempon	anto	Nahaak	ampananta	wania	Cour	on / Domotlaunaon
1000	nau	Jikompon	ente	Nebenk	omponente	wenig	Spu	en / bemerkungen
D 17/1 Ab		Qz	C	h>Aid>IIIIt, (Jimmer	Dol		Gips? Amphibole Hămatit
E 1711 A0								1 Post Florence
2P 17/2 Bv1		Qz	A	lb		Ch, Illit, Glimme	r i	Amphibole, TM
2P 17/2 Bv1 2P 17/3 Bv2		Qz Qz	A A	lb lb		Ch, Illit, Glimme	ŕ ,	Amphibole, TM
ZP 17/2 Bv1 ZP 17/3 Bv2 ZP 17/4 II T		Qz Qz Qz	A A T	lb Ib M		Ch, Illit, Glimme	r i	Amphibole, TM
2P 17/2 Bv1 2P 17/3 Bv2 2P 17/4 II T	Relative H	Qz Qz Qz äufigkeit	A A T Rel.%] ohne C	lb Ib M Quarz (bezog	jen auf 100%)	Ch, Illit, Glimme	r	Amphibole, TM
2P 17/2 Bv1 2P 17/3 Bv2 2P 17/4 II T	Relative H	Qz Qz Qz äufigkeit KF	A A T Rel.%] ohne C	lb Ib M Quarz (bezog	jen auf 100%) Alb	Ch, Illit, Glimme	r i	Amphibole, TM

Zugspitzplatt - Profil 18: ZP_P18, Catena 3 (Knorrhütte-Plattsteig)

18.1 Profilbesch	nreibung			
Bodentyp:		Lößbraunerd	e aus äolischer [Deckschicht über Wettersteinkalk, Subtyp 2
Klasse:	A STATE	Braunerde		
Höhe / Neigung	/ Exposition	2050m/ 23°/ 1	58°SE	
Lage und Reliet	f:	R/H; Hangve	erflachung im Sch	ichtflächenkarst
Vegetationsges Bodenvegetatio	ellschaft / n:	alpine Stufe, S	Seslerio-Caricetun	n semp.
Profilmächtigke	it:	25cm		
Horizontfolge:		Ah / Bvt / II IC	V	
0 – 8cm	Ah	humos, stark o toniger Schluf	durchwurzelt, dich f; schwarz-braun	t; krümelig bis schmierig, z.T. sichtbare Glimmer, stark 10 YR 3/2
8 – 20cm	Bvt	schwach hum wenig Glimme	os, durchwurzelt, er; mittelschluffiger	krümelig, ab 16cm vereinzelt Kalksplittern durchsetzt, Ton, schwach feinsandig; braun 7.5 YR 4/4
>20cm	II ICv (Cm)	Feinmaterial v gefärbt); Schio weiß 10 YR 8/	on oben eingesch chtrippe mit Rundk 1	wemmt, Skelett (50%, z.T. durch Eisenoxide bräunlich arrenrelief, 1 bis 2mm mächtige Residualtontapeten;
18.1.1 Probene	entnahme:			
Probe	Horizont	Entnahmetiefe	Probennummer	
ZP	Ah	0-8cm	ZP (Ah 0-8cm)	
ZP	Bvt	8-20cm	ZP (Bvt 8-20cm)	
18.1.2 Bodenfa	rbansprache n	ach MUNSELL So	oil Color Chart (2	000)
Probe Nr. Horizo	ont [cm]	ocken		naß
ZP 18/1 Ah	0-8 10	0 YR 3/2 very da	ark grayish brown	10 YR 3/1 very dark gray
ZP 18/2 Bvt	8-20 7,	5 YR 4/4 brown		7.5 YR 4/6 strong brown

Zugspitzplatt – Profil 18: ZP_P18, Catena 3 (Knorrhütte-Plattsteig) 18.2. Bodenanalytische Werte

18.2.1 K	orngrö	ißen	verte	ilur	Ig		_							_								
Probe						Korng	rößen	i [µm] i	in Ge	w%	6 (Fein	boden	ozw. L	ösung	sresid	uums	LR de	s anst	ehend	en Ges	teins)	
Nr.	Horiz	ont	[cm]		Skele >200	tt 9 0 200	gS 0-630	630	nS)-200	2	fS 00-63	gU 63-20) n	nU -6,3	fU 6,3-2	T <2	s	U			т	
ZP 18/1	Ah		0-	8	1,5		1,2	2	2,3		3,3	28,1	20	0,9	19,1	25,6	6,8	68	1	2	5,6	
ZP 18/2	Bvt		8-20		1,5		0		0		1,0	3,2	18	8,5	36,4	41,8	0,0	58	1	4	1,8	
18.2.2 B	lodenp	hysi	kalis	che	Indic	es															-	
Probe						Bod	enphy (Vert	ysikalis hältnisa	che l zahle	Indic n)	es		Chai (st = S= S	rakteri stark; Sand; l	sierun sw = : J = Sc	g Bode schwa hluff; 1	enart ch; mi Γ = To	= miti n; L =	tel) Lehm			
Nr.	Horiz	cont	[cm]	L	J/T	T/U	U/S	U+*	T/S	mL	J/gU	fU/gU		Bo	odenar	t		Boder	nart- pe		Haupt- gruppe	
ZP 18/1	Ah		0-8		10	0,4	10	13	,8	0),7	0,7	sw to	oniger	U		L	.ehms	chluff		U	
ZP 18/2	Bvt	8	-20		1,4	0,7	1		1.4		- 1		mi to	oniger	L			Schlu	ffton		Т	
18.2.3 B	odenc	hem	ische	We	erte							1		100		-						
Probe										Kenr	werte	des Fein	bodens	s /Lõsu	ngsresi	duums	LR			-		
MOCT.				рН (CaCl ₂)	CaC([%]	D3	Corg [%]	org.	Subs [%]	stanz	N [%]	C/N		Dithion	t-Extra [%]	ktion	C)xalat-E Fe₀	xtr.	Fed/	
Nr.	Horiz	ont	(cm)									1		A	4	Fed	Mn		[%]	64		
ZP 18/1	Ah	1	0-8		5.3	1,3		6,07		16,6	10.16	0,30	20,2	03	38	1 49	0.04		0.62		0.42	
7P 18/2	Bvt	1.5	8-22	E	5.1	0		2,81		4,8	· · · ·	0,27	10,4	0.3	34	1.05	0.02		0.63	-	0.60	
18.3 Mir	neralan	alvt	ische	We	erte		-		-	-	_	-		1 90	-	1,00	0,02		0,00		0,00	
18.3.1 R	öntger	fluc	resze	enz	Analy	se (R	FA)															
									Ha	auptel	emento	gehalte (%]									
Probe	SiO ₂	Al ₂ O	3 Fe	2O3 tal	FeO	Fe ₂ O ₃	Mn	O Mg	0 0	CaO	Na ₂ O	K20	TIO	P ₂ C) ₅ H ₂	o Lo	ss on i	gnition	sum	of conc.		
Bvt	20,06	38,5	4 14	,22	0,39	13,78	0,2	5 0,6	3	1,23	<0,20	0 0,59	1,64	0,1	9 2,1	2	22,5	9		77.	84	
Droho	Po I	Co	TC	_	Cr.	Cult	2011		Spu	renel	ementg	ehalte [p	pm]	50	Se 1	Th		V I	vI	70	7.	
Bvt	Da	UG	10		UI.	<u>u</u>				NU	INI	r.b	NU	303	45	10	-	v	-	211	- 11	-
	105	207		36	165	13	33	103 3	37	85	134	76	28	<0,10	9	24	<5	223	78	88		391
18.3.2 (Seoche	emis	che I	ndia	ces	_	_		G	lanch	amiech	a Indica			_	-		_	_	-		_
Probe			SiO ₂ / Al ₂ O ₃	T	FeO/ Fe ₂ O ₃	CaO MgC	/	CaO/ K ₂ O	Na; Al ₂	zO/ 03	K2O/ Na2C		O+Na ₂	20+K2C)/Al ₂ O ₃	Si +F	O2 + Al	203	Cat)+)	Sr/Ba	
ZP Byt	1		0,52		0,03	1,9	35	2,08		•	+	1-11-1		-			72,	82	1	,86	4,37	
18.3.3	Schwer	min	erale	(Me	ethode	RAS	T 199	90, 19	93)	11/	and the second		Non O	1 0 00		-	_	_	_	_	_	
Probe			G	Z	T	R	Ges	amispei p	St	(NOII	Di	And	ction 0, Hb	1-0,251	Ep+Z	0	Sons	stige 1)	-	Korns	umme	-
ZP Bvt			52	5	4	0	0		0	1	0	0	13	3	26			0		23	3 2)	
Prohe	-		-	7	т	Rests	pektru A	m ohne	Gran	hat (be	ezogen Di	auf 100	%); Fra	aktion 0	,1-0,25 Ep+Zo	mm	Sonstia	0.1)		Kornei	mme	-
ZP Bvt			-	7	4	4	4	1	7	1	0	0	45	5	20		9			55	2)	
G= Ep	= Granat; +Zo = Ep	Z = Z idote	irkon ((+ Zois	+ Xer it + F	notim + (linozoi:	Monazi sit + fein	t), T = körnig 2) Bes	Turmali e Aggre	in; R =	= Ruti	il; Ap = Pumpel Statistik	Apatit; S lyit)	it = Sta	urolith;	Di = D	isthen,	And =	Andalı	usit; Hbl	= Hornl	olende;	11
18.3.4	Röntae	ndif	frakti	ons	-Anal	vse (R	DA)		nicun		Julioun	wegen	gennige		popula	aone			-			
Probe		1	Relative	e Tor	nminera	Igehalte	in der	Fraktio	n <0,	002m	m [Rel	%]				-	Komm	entar				
7D But		1	ML m 1)		filit ²⁾	Kaolin	lit 3)	Chlo	rit	ΣK	(+Ch		Gesan	ntmeng	e	Krista	allisatio	n		Quellfäh	igkeit	_
4) ML	an = unre	gelmä	ißige ill	itreic	the Wed	hsellag	erungs	minera	le	00	1		110			1	Jui			Keil	IE.	
5) Illite 6) Kao	e (10 Å-N olinit (7 Å	linera -Mine	l, teilwe ral); Cl	eise nlorit	randlich (7 Å-M	aufweit neral)	bar), l	ndex ze	igt ra	ndlich	ne Aufw	veitung d	er Schi	ichten a	an							
Probe		1	Verteilu	Ing s	onstige	Minera nente	le		Nebo	ankon	nonon	te			weni	T.			Sources	/ Romo	rkungen	-
ZP Bvt		t		iaup	Gibbsit	nome		Qz	HODE	- non	ponen			-	Cc, T	M	-		Spurei	1 Defile	Rungen	
		1	Relative	Hä	ufigkeit	[Rel.%]	ohne (Quarz (I	bezog	ien au	uf 100%	6)			-							
					KF	keine	Angah	en mön	lich	Alb					Cc					Dol		
Qz = Qua	rz; KF =	Kalife	ldspäte	; Alt	a = Albit	; Cc = C	alzit; [Dol = Do	olomit	t; Ch	= Chlor	it; TM =	Tonmir	nerale r	nit Aufv	veitung	von d	> 10 Å	(keine	Untersc	heidung	ZW.
Illit und G	limmer m	löglic	h), ? =	verm	utet		1.1	1.1	6.0			1.1	_	1		100	12	1.1	2.7	2		1.1

Zugspitzplatt - Profil 19: ZP_P19 ZP, Catena 3 (Knorrhütte-Plattsteig)

19.1 Profilbesch	reibung		
Bodentyp:		Terra fusca-Br	aunerde, äolisch geprägt, Mischtyp
Klasse:		Braunerde	
Höhe / Neigung	/ Exposition	2040m/ 5°/ 178	°SSE
Lage und Relief		R / H ; Dolinenf	üllung südlich des Brunntals
Vegetationsgese Bodenvegetation	ellschaft / n:	alpine Stufe, Se	eslerio-Caricetum semp.
Profilmächtigkei	t:	12cm	
Horizontfolge:		Ah / Bcv / II ICv	
0 – 1cm	Oh	Graswurzelfilz,	organisch; schwach karbonathaltig, skelettfrei, stark glimmerhaltig; schwarz
1 – 5cm	Ah	durchwurzelt, s glimmerführend	ehr stark humos, krümelig, schwach karbonat- und skeletthaltig; stark l; braunschwarz
5 – 10cm	Bvt	kaum durchwur glimmerführend	zelt, schwach humos; krümelig bis subpolyedrisch, karbonat- und skelettfrei, l; braun 7,5 YR 5/4
>10cm	Cn	Wettersteinkalk unverwittert	, durch Eisen und Tontapeten leicht bräunlich gefärbt, ansonsten
19.1.1 Probene	ntnahme:		
Probe	Horizon	t Entnahmetiefe	Probennummer
ZP	Bvt	5-10cm	ZP (Bvt 5-10cm)
19.1.2 Bodenfa	rbansprach	e nach MUNSELL Soi	I Color Chart (2000)
Probe Nr. Horizo	ont [cm]	trocken	naß
ZP 19/1 Bvt	5-10	7,5 YR 5/4	

Zugspitzplatt – Profil 19: ZP_P19 ZP, Catena 3 (Knorrhütte-Plattsteig) 19.2. Bodenanalytische Werte

19.2.1	Korngröß	envert	eilung	10					14 Aug 11	-	S1.2.46					18.1		-564		6.74	_
Probe				K	orngrö	ßen [L	im] in (iew.	-% (Feir	nbi	oden ba	W.L	ösung	sresid	uums	LR de	s ansle	iend	len Gest	eins)	
Nr.	Horizont	[cm]	Skele >200	ett 00	gs 2000-	3 -630	mS 630-2	00	fS 200-63	3	gU 63-20	20	mU 0-6,3	fU 6,3-2	<	2	S	U		T	
ZP 19/1	Bv1	5-10	0,9		0		0		0		15,7	2	28,1	21,1	35	1 0	0 6	4,9	(I	35,1	
19.2.2	Bodenphy	sikalis	che In	dice	s																
Probe					Bode	enphy (Verh	sikaliso ältnisza	he li ahler	ndices 1)			Ch (st S=	arakte = stari Sand;	risieru k; sw = U = S	ng Bo schu	denar vach; i f; T = 1	t mi = miti Fon: L =	el) Leh	m		
19.2.1 Korngrößenverteilung Korngrößen [µm] in Gew% (Feinboden bzw. Lösungsresiduums LR des ans Nr. Horizont [cm] Skelett g\$ S g1 mU TU T Z S ZP 19/1 Bv1 5-10 0,9 0 0 15,7 28,1 21,1 35,1 0,0 19.2.2 Bodenphysikalische Indices Charaktensierung Bodenart (si = stark; ser = starks): mi Sesand: U = Schluft; T = Ton; L Nr. Horizont (cm) U/T T/U U/S U/F/S MU/gU Bodenart Bod ZP 19/1 Bv1 5-10 1,8 0,5 - 1,8 1,3 mi schwaft; mr Sc 3.2 Bodenchemische Werte Kornowerte des Feinbodens /Lösungsresiduums LR Bod Ph Sc Sc 1,8 1,3 mi schuff; ger Sc Nr. Horizont [cm] K [%] Ng [%] Ng				Boder	nart-		Hau grup	ipt- ope													
ZP 19/1	Bv1	5-10	1,8	1	0,5	4	22	51	1,8		1,3	mi	schluf	figer T	1	1	Schlu	ffton	01.1	Т	-
19.2.3	Bodenche	emisch	e Wert	e							-										
Probe								1	Kennwer	te (des Fein	bode	ns /Lös	ungsre	siduur	ns LR					
19.2.1 Korragrößenverteillung Komprößen (µm) in Gew. % (Feinboden bzw. Lösungsresiduums LR des anslehenden Gesteins) Probe Komprößen (µm) Skeiett gS mit St. Horizont [m] Skeiett gS mit St. Horizont [m] Skeiett gS mit St. St. U T ZP 1911 Bv1 5-10 0.9 0 0 15,7 28,1 21,1 35,1 0.0 64,9 35,1 19.2.2 Bodenphysikalische Indices Charatkersierung Bodenart (Verhältniszahlen) (Verhältniszahlen) Se Sand; U = Schuftfin T = Tor. L = Lehm Fee Nr. Horizont (en) UT T/U US UVFTS mu/gu fu/gu Bodenart gruppe gruppe 2P 19/1 Bv1 5-10 1,8 0,5 - 1,8 1,3 mischuftiger T Schuftfin T = Tor. L = Lehm T 2P 19/1 Bv1 5-10 1,8 0,5 - 1,8 1,3 mischuftiger T Schuftfin T = Tor. E = Antim T																					
Nie	Harizont	Ioml				t li fi								Al	Fed	N	In	[9	6]		
7P 4/1	Byt	5-10		-	18	-	7.05	1	2 13	+	nh	nh		-		-			-	-	
Prohe	Dit	0.10	6,2	_	110	1	100	_	110		11.5.		· 1		-	1	1		-	-	-
TODE				~	-	-	-	-	KAKe	11	mmol/kg	1	_		-		1	_			_
Nr	Horizont	[cm]	ĸ	[%]	Na	[%]	Mg	[%] C	а	[%	5]	AJ	[%]	H*	[%]] ΣK/	K	sätt	launa	1%1
ZP 4/1	Byt	5-10	n.b.	n.b.	n.b.	n.b.	n.b.	n.b	. n.	b.	n.	D .	n.b,	n.b.	n.b.	n.b	. n.b			n.b.	1.1
19.3 Mi 19.3.1 I	neralana Röntgenf	ytisch uoresz	e Werte	e naly	se (R	FA)			1									1			
								Hau	pteleme	ent	gehalte	[%]									
Probe	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃ Total		FeO	Fe ₂ O	3 Mn	0	MgO	C	CaO N	la ₂ O	K₂O	TiO2	2	P ₂ O ₅	H ₂ O		Loss on ignition		sum of conc.
Bvt	36,41	18,29	7,29		1,10	6,01	0,1	8	1,42	2	2,29 0),55	1,43	0,8	9	0,42	4,32		30,16		69,44
	1 - 1		-		-		S	pure	neleme	nto	gehalte	[ppm	1	Lee	_		-		- T. M.		1 -
Probe Bvt	Ba 239	Ce 145	Co 15	Cr 118	Cu 15	Ga 20	La 79	2	4 5	5	Ni 45	92	100	<0,	1	94	16 <5	1	γ 14 128	42	27 269
19.3.2 Proho	Geochen	nische	indice	S Cal	2/	C=0/	Maa	N	K-OI	_	10.0	+Maal	0+K-0	/AL-O-	1	SiO.+	ALO.	To	'a0+	Sr/F	Ra
19.2.1 Forward Number Version Charge State Komgrößen (µm) in Gew -% (Feinboden tzw. Lösungsresiduums LR dies ansidhenden Gesteins) Nr. Horizont (m) 20000-838 63.20 20.20 2																					
ZP Bvl	1,9	99	0,15	1	,61	1,60	0	03	2,6	0			2,92			6	1,99		3,71	1.0	0,39
19.3.3	Schwern	ninerale	e (Meth	ode	RAS	T 199	0, 199	3)	Warnach	1	0/1: Ers	Ittion	0102	Enm			_	-			_
Probe		G	Z	T	R	Ap) S	St	Di	117	And	H	Hbl	Ep	+Zo	So	instige 1)	-	Korr	sum	me
ZP Bvt		20	6	3	3	3		6	0		0		36	1	6	-	7			69	
Probe		T	Z	T	Rests	pektrur Ap	n ohne)	Sran St	at (bezog Di	gen	And)%); F F	Fraktion Hbl	Ep+2	25mm Zo	Sons	tige 1)	-	Korns	umm	e
G = Gra Epidole	nat; Z = Zirk (+ Zoisit + K	on (+ Xer linozoisit	ə notim + N + feinkör	9 Ionaz nige	tit), T = Agoreg	Turma ate vor	lin; R =	Rutil;	Ap = Ap (1) Sons	ati	t; St = S e: ZP By	taurol	lith; Di =	= Disth	en, An Chlorite	d = And a) : 2) [dalusit; H Beachte s	bl = l schle	Hornblend chtere Sta	le; Ep atistik	+Zo =
geringer	Kornpopula	tion!					Beschr	aibun	g des Sc	:hw	verminer	alspe	ktrums								
ZP Bvt: gerunde	mäßige SM t), viele vere	-Menge, I rzte Leic	blaß-gelb htminera	lich, le und	wenig F d Karbo	raktion nate; k	i >0,1m arbonat	m; ve reich	reinzelt s (mikritis	sph	närische e Körner	Kiese), gar	elalgen, nz verei	Zirkon nzelt m	ie seh nagnet	klein; ische K	opakreict lörner	ı (Kō	rner meis	t gut	
19.3.4	Röntgen	diffrakt	ions-A	naly	/se (R	DA)						-			212		_	_			
Probe	100	Relative	Tonmin	eralg	ehalte i Kaolinit	n der F	Chlorit	<0,00	D2mm [R	el.	-%]	Goes	amtmon	00	Kri	Kom	tion	-	Qualifi	hicke	ait
ZP Bvt		kei	ne Aussa	ige m	öglich		onon		Zitron			k	lein	90	S	chlecht			ka	um	
1) M So	Lim = unrege	Imäßige 3) Kaolin	illitreiche it (7 Å-M	Wec	hsellag); Chlor	erungs tit (7 Å-	mineral Mineral	e; 2)	Illite (10	Å-I	Mineral,	teilwe	eise rar	ndlich a	ufweit	bar), In	dex zeigt	ranc	lliche Aufi	weitur	ng der
Probe		Verteilur	ng sonsti	ger M	linerale		Mohe	nkan	nononte	-	-			nia			C.	ITOP	Remark	maer	
ZP 17/1	Ah	Ha	Qz	onen	ile.	TM	, Cc	nkon	ponente	3			WE	ng	_		Sp	uren	/ Demerki	unger	
		Relative	Häufigke	eit [Re	el.%] of	ne Qu	arz (bez	ogen	auf 100	%)		_		1							
			KF	koi	ne And	aben n	ödlich	Alb					C	C					Dol		
Qz = Qu Illit und (arz; KF = Ka Glimmer mö	alifeldspä glich), ? =	te; Alb =	Albit;	Cc = C	alzit; E	ol = Do	lomit	Ch = Cl	hlo	rit; TM =	Tonr	mineral	e mit A	ufweit	ing vor	nd > 10 Å	(kei	ine Unters	cheid	lung zw.

Zugspitzplatt - Profil 29: ZP_P29, Catena 4 (Plattsteig- Brunntal)

29.1 Pro	filbeschr	eibung			-			_						
Bodenty	p:			Reife	Polst	errendz	ina aus R	lesidual	ton übe	r Loka	Imorä	ne		
Klasse:				Rend	zina									
Höhe / N	leigung / l	Expositi	ion	2170r	n/ 28°	/ 180°S	SE							
Lage un	d Relief:			R/H	; Mitte	Ihang								
Vegetati	onsgesell	schaft /		Terra	ssierte	s Carice	tum firma	e, Terra	ssetten	mit Sch	utt bes	streut		
Bodenve	egetation:			10000						00000				
Profilmä	chtiakeit:			12cm										
Horizont	folge:		-	Ah / E	Scv / II	ICv								
0 1	Fom	Ob		intone	iv due	huurzo	It organic	oh: alim	morbalti	a kriim	olia bi	c cubru	aladricah	karbonat und
0-1	Juli	Un		skolot	thaltia	arause	hwarz 2 5	V 2/1	mernaiu	y, Mult	ielly pl	s sunh	Jieunson,	Karbonat-unu
15	17cm	т		wonio	durch	, grause	mittal hu	moereut	apolyada	iech ka	rhona	tarm e	kolotthalti	0
10-	Tron	·		dimm	orführ	and br	undrau 2	5 V 6/2	opolyeu	15011, NO	aroona	tann, s	Kelettilaiti	9,
17	22cm	THOW		kaum	durch	wurzolt	mittal bur		nolvodri	isch ka	rhonat	haltin	ckolottroi	oh (75%) mit
17-4	22011	TTOV		Toplin	uurun son al	Matrix	hoigebr	nus, suc		SCII, NO	Duna	nanuy,	Skelettien	511 (1 5 %) thit
>12	lom	11101		Morö	isell a	S Maun	, beigebia	aun to i	Docidu	altanta	noton:	woi0 1	0 VD 0/1	
20 1 1 0	rohonont	nahma		Inora	lensue	su aus v	Vellerslen	INAIN ITII	resiuu	anoma	Jeren'	Wells I	0 11 0/1	
Z9.1.1 P	robenem	Horiz	ont I	Entrohm	otiofo	Der	honnumm	or		_				
7P 20/0	_	Oh	Unit 1		Scm	70	4/0 (Ob 0.	15cm)			_		_	
7P 29/1	07 08 02	T		15-	17cm	70	4/1 (Bcy 1	5-17cm)		_	_	-	_	
ZP 29/2	07.08.02	TCv		17-	22cm			o monij						
ZP 29/3	07.08.02	II ICv	6	>2	2cm	ZP	4/2 (II ICv	>15cm)	_					
29.1.2 B	odenfarb	anspra	che nac	h MUN	SELL	Soil Co	lor Chart	(2000)						
Probe			trock	(en	1000		naß							
Nr.	Horizont	[cm]												
ZP 29/0	Oh	0-1	5 2,5 \	/ 3/1	very d	ark grey	2,5 Y	2,5/1	black					
ZP 29/1	Ť	15-1	7 10 Y	R 7/6	yellow		10 YF	R 6/6	brownis	sh yellow	/			
ZP 29/2	T+Cv	17-2	2 10 Y	R 8/3	very p	ale brown	1 10 YF	R 6/3	pale bro	own	-	_		
ZP 29/3	ICv	>22	2 10 Y	R 8/1	white	_	10 YF	R 8/2	very pa	le browr	1			
29.2. Bo	denanaly	tische	Werte											
29.2.1 K	orngröße	enverte	ilung											
Probe		_		Korngröl	Sen [µn	n] in Gew	% (Feinb	oden bzv	w. Lösung	gsresidu	ums LF	R des ar	istehender) Gesteins)
Nr.	Horizont	[cm]	Skelett	gS		mS	fS	gU	mU	fU	T	S	U.	т
-			>2000	2000-	630	630-200	200-63	63-20	20-6,3	6,3-2	<2	Ŭ		,
ZP 29/0	Oh	0-15	15,0	3,4		3,1	6,5	19,1	29,5	15,2	23,0	13,0	63,8	23,0
ZP 29/1	Т	15-17	2,0	0		1,7	11,6	10,1	13,6	22,9	41,5	13,3	46,6	41,5
ZP 29/2	TCv	17-22	50,0	n.b		n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
ZP 29/3	ICvLR	>22	Moräne	2.5		8.9	2.9	0.9	21.0	33.2	30.6	14.3	55.1	30.6
29 2 2 B	odennhys	ikalisc	he Indic	96		-1	1 315				1 e e fe l			2012
Prohe	ouenphys	manac	ne maie	Bod	onnhys	ikalische	Indices	-	Charakt	orisionir	na Rode	hart		-
TIODE				Dou	(Verha	iltniszahl	en)		(st = sta	rk; sw =	schwa	ch; mi =	mittel)	
1.0			-	1	1		1	1	10- Sant	1,0-50	unun, I	- 100,	denart.	Haunt
Nr.	Horizon	t [cm]	U/T	T/U	U/S	U+T/S	mU/gU	fU/gU	1.13	Bodena	rt		gruppe	gruppe
ZP 29/0	Oh	0-15	2,8	0,4	4,9	6,7	1,5	0,8	schluffig	ger L		To	onschluff	U
ZP 29/1	T	15-17	7 1,1	0,9	3,5	6,6	1,3	2,3	mi tonig	er L		S	chluffton	Т
ZP 29/2	II ICVLF	>22	1.8	0.5	3.8	6.0	23.3	36.7	mi schlu	figer T		S	chluffton	Т
Nr. ZP 29/0 ZP 29/1 ZP 29/2	Horizon Oh T II ICvLR	t [cm] 0-15 15-17 t >22	U/T 2,8 7 1,1 1,8	T/U 0,4 0,9 0,5	U/S 4,9 3,5 3,8	U+T/S 6,7 6,6 6,0	mU/gU 1,5 1,3 23,3	fU/gU 0,8 2,3 36,7	schluffig mi tonig mi schlu	Bodena ger L er L uffiger T	rt	To S	gruppe onschluff chluffton chluffton	9

Zugspitzplatt - Profil 29: ZP_P29, Catena 4 (Plattsteig- Brunntal)

29.2.31	Sodenche	misch	ie we	rte				ĸ	ennwerle	des Fei	nbode	ns /l ös	unosres	iduum	sIR	-		_		-
Probe			pH (Ca	Cb)	CaCO		Cora	lora St	ubstanz	N	C/N	1	Dithion	it-Extra	aktion		Oxalat-E	xtr.	F	ed
					[%]		[%]	[%]	[%]	-		e nulles i	[%]	and the second		Feo		F	ed
Nr.	Horizont	feml		-11					-			13	AI	Fea	Mn	£	[%]	5		
ZP 29/1	T	15-17	7,0)	10,2	11	2,1	3	,6	0,25	8,4	0	,33	2,10	0,03	3	0.09		0	04
Probe				-		-			KAKeff	[mmol/kc	1		- I.o	-		- 10	41.54			
			-	T	T		L	T.	Tourien	(initionity)	1		Laur I		1	1			Basen-	-
Nr.	Horizont	[cm]	K	[%]	Na	[%]	Mg	[%]	Ca	[9	6]	Al	[%]	H+	[%]	Σĸ	AK	sät	tigung [%]
ZP 29/1	T	15-17	0,49	0,2	5,48	2,0	33,38	12,4	229,3	8 85	,0	0,42	0,1	0,82	0,3	269,	,97		99,5	
29.3 Mi	neralanal	tisch	e Wei	te	1.0															
29.3.1 F	Röntgenflu	lores	zenz-/	Analy	se (Ri	FA)	_		1.1.7.5		10/1									_
1.11				_				Hau	iptelemei	ntgehalte	[%]							_	_	
	~			e - 2				~				~	1.5			10	5		55	onc
Probe	SiO	Al ₂ O		Tota	FeO		5	MnC	MgC	CaC		Na ₂ (K20	19		P2O	H2O		gnitic	ofo
	i finan		-					E.					11.1	-		1		1	<u> п.е.</u>	Sun
ZP 29/1	35,22	28	,76 1	2,47	1,72	11	0,75	0,09	2,7	1,4	8 [nnm]	0,20	2,12	1, 1,	,08	0,16	5,51	-	18,0	82,88
Probe	Ba	Ce	Co	Cr	Cu	G	a La	a N	b Nd	Ni	Pb	Rb	SO3	Sr	Th	U	V	Y	Zn	Zr
ZP 29/1	218	106	24	135	42	30) 40	6 20	0 39	94	55	117	<0,1	65	19	7	195	45	708	216
29.3.2	Geochem	ische	Indic	es							_	_		-	-				_	_
Prohe		1 SiO		eO/	I CaO	11	CaO/	Ge Na ₂ C)/ Ka	che India	CaO	+Na-O+	K ₂ O/Al ₂	0, 19		AlaOa	Ca	0+	Sr/B	1
11000		Al ₂ C) ₃ F	e2O3	MgC		K20	Al ₂ O	3 Na	20	ouo	ind to .	112 017 112	1	FegO3	1205	Mg	0		_
ZP 29/1		1,	22	0,16	0,5	5	0,70	0,0	1	10,6		1,7	'5		76	6,78	4	1,18	(,30
29.3.3	Schwermi	ineral	e (Met	thode	RAS	T 199	0, 19	93)												
1.5		-	-			Ges	amtspe	ktrum (Kornzahl	-%); Fr	aktion	0,1-0,2	25mm			-				
Probe 7P 29/1		G 20	12	1	R 2	A	p	St 10	Di	And	1.1	Hbi 36	Ep+	20	So	Onstige		Ko	msumm 500	e
21 20/1		1 20	14	4	Rests	pektru	m ohne	Grana	it (bezog	en auf 10	0%); F	Fraktion	0,1-0,2	5mm	_	~				
Probe	-		Z	Т	R	A	p	St	Di	And	1	НЫ	Ep+Z	0	Sons	tige		Korr	summe	
ZP 29/1	= Granat: 7 =	Zirkon	15 (+ Xen	5 otim + I	2 Monazit	2) T =	Turmali	13 n' R = 1	0 Rutil: An	0 = Anatit:	St = S	45 Staurolit	$\frac{1}{h:Di=0}$	listher	1 And :	= Anda	lusit Hb	= Ho	40%	a.
Ep	+Zo = Epido	te (+ Zo	hisit + Kl	inozois	it + fein	körnig	e Aggre	gate vo	on Pump	ellyit); 1	Beac	hte sch	lechtere	Statis	tik weg	ien geri	inger Ko	rnpopl	lation	**
			and the second	-	ultar > 0	Amont	Besch	reibung	des Sch	wermine	ralspe	ktrums	in the second	an lak			Kar	1/2		
- ge	ringe SM-Me	nge, pr	aun, ka	umera	kuon >u	,100	, Materi	al relati	IV INSCHI,	gennger	Орак	antell, ł	arbonat	reich,	vereinz	zeit, m	agneusc	ne Kol	ner	-
29.3.4	Röntgend	iffrak	tions-	Analy	/se (R	DA)														
Probe	nonigena	Re	lative To	onmine	ralgeha	te in c	ler Frak	tion <0	,002mm	[Rel					Kom	mentar				
ZP 29/1		ML	_{R(} 1)	it 2)	Kaolin	it 3)	Chio	rit	ΣK+Ch		Ges	amtmer	nge	Kris	tallisat	ion		Quell	ähigkei	6
0) M			0	37	hadles	29	minore	34	63	-		-	÷.		<u> </u>	*			•	-
2) MI 3) IIIii 4) Ka	te (10 Å-Mine te (10 Å-Mine	naisige ral, teil neral):	weise ra	andlich	aufweit	par), li	ndex ze	igt rand	lliche Au	fweitung	der So	chichter	1 an							
Probe	Sum I. A-M	Verte	ilung so	nstiger	Minera	e														
ZP 29/1			Haupt	kompo	nente			Neber	kompon	ente			wer	ig			Spure	n/Be	merkung	gen
			tion 1 per	Qz	Delate	-h	2	Co	>KF>Alb	0/3		_	Do		_					_
		Relat	ive Hau	KE	Rel.%]	onne (Juarz (I	bezoge	Alb	170)		-	Co	-			-	Dr	d	-
				26					21				37					16	5	
Qz = Qu	arz; KF = Kal	ifeldspä	ite; Alb	= Albit;	Cc = C	alzit; D	Dol = Do	olomit												

Reiteralpe - Profil 1: RA_P1, Catena 4 (Saugasse, Ost)

1. 1 Profilbes	chreibung				
Bodentyp:		Rendzin	a-Terra fusca		
		aus Res	idualton von rotge	adertem Dachst	einkalk, z.T. tektonisch brekzilert
Klasse:		Terrae c	alcis		
Höhe / Neigung Höhenstufe	/ Exposition	n / 1570m /	10° / NNW, obere s	ubalpine Stufe	
Lage und Reliet	f:	R/H; S	chichtkopfkarst, Ka	rstgasse	
Vegetationsges Bodenvegetatio	ellschaft / n:	aufgelocl varia	kertes Alpenrosen-L	atschen-Gebüsc	h (Erico-Rhododendretum hirsuti) mit Sesleria
C-Horizont:		Dachstei	nkalk, rot geädert u	nd brekziiert der l	Reiteralm-Fazies (Nor)
Profilmächtigke	it:	14cm			
Horizontfolge:		Ah / Bv-1	/ mCn		
0-1cm	Ah	Graswurz	zelfilz, feinerdearm,	dicht, glimmer- u	nd sandhaltig; sandig-lehmiger
0-1cm	Ah	Graswur 7.5 YR 4	zelfilz, feinerdearm, /1	dicht, glimmer- u	nd sandhaltig; sandig-lehmiger Schluff; dunkelgrau
1 - 14cm	Bv-T	durchwu karbonat stark sch	zelt, mittel humos; haltig mit sekundäre luffiger Ton; hellbra	dicht, subpolyedri er Kalkausfällung un 7,5 YR 6/4	isch, skelettfrei, glimmerführend, mittel in Nestern; als Kluftfüllung in mCn ausgreifend;
>14cm	mCn	rotgeäde	rter Dachsteinkalk,	z.T. tektonisch br	ekziiert mit Residualtontapeten; 5 YR 8/2
1.1.1 Probener	tnahme				
Probe		Horizont	Entnahmetiefe	Probennummer	
RA 1/1 27.08.01		Bv-T	1-14cm	RA 1/1 (Bv-T 0-	14cm)
RA 1/2 27.08.01		mCn	>14cm	RA 1/2 (mCn >1	4cm)
1.1.2 Bodenfar	bansprach	e nach MUNS	SELL Soil Color Ch	art (2000)	
Probe		trocken		naß	
RA 1/1 Bv-T	1-14	7,5 YR 6/4	light brown	7,5 YR 5/6	strong brown
RA 1/2 mCn	>14	5 YR 8/2	pinkish white	5 YR 8/3	pink

Reiteralpe – Profil 1: RA_P1, Catena 4 (Saugasse, Ost) 1.2 Bodenanalytische Werte

1.2.1	Korngrö	Benv	ertei	lung			4	_	÷.,											-			
Probe						K	orngrö	ßen [µ	ım] in (Gew%	(Feinl	boden b	zw. Lös	ungsres	siduur	ns LR	des ar	nstehei	nden	Geste	eins)		
Nr.	Horizont	[C	m]	Skelett >2000		gS 2000-6	30	m 630	IS -200	fS 200-6	63	gU 63-20	mU 20-6,	3 6,	U 3-2	T < 2	S		U			т	
RA 1/1	Bv-T	1-	-14	0	171	0		(2	3,8		17,6	27,3	2	8,7	22,7	3,1	В	73,6	11		22,7	
RA 1/2	mCn L	R >	14	0		0		16	5,3	11,3	3	8,5	22,4	2	3,0	18,4	27,	6	53,9	111		18,4	
1.2.2 B	odenphys	ikalisc	he Ind	lices			- '				-			_		1.1				-			
Probe			Ĩ			Boo	lenphy (Ver)	/sikali: nältnis	sche In zahlen	dices)			Charal (st = sl S= Sar	kterisier ark; sw hd; U =	ung E = sch Schlu	Bodena nwach iff; T =	art ; mi = r Ton; L	nittel) _= Leł	im				
Nŕ.	Horizo	nt (cm]	U/T	T	70	U/S	Ut	T/S	mU/g	jU	fU/gU		Bod	lenart			Bod gru	enart- uppe			Haupt- gruppe	
RA 1/1	By-T	1	-14	3,2	(),3	19,5	2	5,5	1,6	i	1,6	st tonig	jer U				Tons	schluf	f		U	-
RA 1/2	mCn LR	3	>14	2,9	0),3	1,9	2	2,6	2,6	j.	1,2	schluff	iger L				Tons	schluf	f		U	
1.2.3	Bodenc	hemis	sche	Werte				-															
Probe					-					Ken	nwerte	des Fe	inboden	s /Lösu	ngsre	siduu	ns LR						
				pH (Ca	aCl ₂)	CaC [%	O3]	Cor [%]	g org	g. Subs [%]	tanz	N [%]	C/N	0	Dithior	nit-Ext [%]	raktion		Oxa	lat-Ex Fe₀	tr.	Fe Fe	d d
Nr.	Horiz	ont	[cm]											A	8.11	Fed	M	n		[%]			
RA 1/1	By-T		1-14	5.3		5.3	2	1.86	3	32		0.15	12.4	n.b		3,40	n.)	b.	1	1,40	-	0,	4
RA 1/2	mCn L	R	>14	82	,	95	6	0.06	3	n.b	-	nb	n.b.	n.b		n.b.	0.	b.	-	n.b.		n.	b.
Probe							·			KI	AKoff E	mollke	1	-			1	_		_			
				-	-		-	1		NA I	Arcen [minol/kg	1	1	1	- 1	-	-	_	_			
Nr.	Horizo	ont	[cm]	K	[%]	Na	[%]	M	g [%	6]	Са	[%] AI	[%]	H	•	[%]	ΣKA	К		sätti	asen- gung [%]	
RA 1/1	Bv-T	-	1-14	0	0	1,22	2,6	1,2	0 2,	6 3	34,49	75,	2 4,8	3 10,5	4,	14	9,0	45,88	3	1	-	80,0	-
1.3 Mi	neralan	alytis	che	Werte;	1.3	.1 Ra	intge	enflu	oresz	enz-A	Inaly	tgehalte	FA) [%]		_						_		
Probe	SiO ₂	Al2O3		re2U3 Total	FeO		Fe ₂ O ₃	0.00		MgO	CaO		Na ₂ O	K ₂ O		TIO ₂	P.04		H ₂ O	nee on	ignition	sum of	conc.
PA 1/1	45.70	17.5	5	9 10	0.82	7	24	0.15		36	1 15	-	70	1.60	4	06	0.2	2 3	3 75	20	1.83	79	19
RA 1/2	0,54	0,3	3 0	0,14	<0,1		.b.	<0,0	1 (0,60	54,7	3 <	0,20	0,05	<(),05	<0,0)2 (0,08	4:	3,38	56	54
	_						_		Sp	urenel	ement	gehalte	(ppm)										
Probe	Ba	Ce	Co	Cr	0	Cu	Ga	La	Nb	Nd	N	i F	PD F	Rb	SO3	Sr	Th	U	1	V	Y	Zn	Zr
RA 1/1	324	118	13	112		10	<5	58 <15	29	52 <10	38	8 9	11 1	10	0,2	100	14	<5	1	35	66 <5	333	325
122	Coophe	mice	holo	diaco			-			1 .16			19	10	-110	100					-	1.16	1.0
Probe	Geoche	misc	nein	SiO ₂ / Al ₂ O ₃	F	eO/ e2O3	CaC	2/	CaO/ K ₂ O	Na ₂ Al ₂	0/ 03	K20/ Na20	CaO-	Na ₂ O+	K20//	Al ₂ O	SiO ₂ + +Fe ₂ C	Al ₂ O ₃	1	CaO- MgO	+ S	r/Ba	
RA 1/1	Bv-T 0-14	cm	_	2,60		0,11	0,8	35	0,68	0,	,04	2,41		0,20)		7	1,44		2,5	1	0,3	1
RA 1/2	mCv >14	m	role (1,64	de F	-	91,	22	021	1	<	· • ·	_	- 6	-	_	-	1,01	-	55,3	3	2,7	8
1.3.3	Scriwer	mine	rale	wetho	ue r	ASI	199 Ge	samts	soektru	m (Kon	nzahl-	%): Fr	aktion 0	1-0.25	nm	-	-	-		_		-	_
Probe RA 1/1	Bv-T 1-1	4cm	G 37	Z 11	T 5		२ ८	Ap 1	St 2		Di 2	And 0	Hb 5	1	Ep+ 29	Zo }	So	nstige 0	η		Kor	nsumme 300	¢.
Probe RA 1/1	By-T . 1-1	4cm	1	Z		Res T 4	R R 0	rum ol	hne Gr \p 4	anat (be St 16	ezoger	n auf 10 Di 3	0%); Fra And 0	aktion 0 H 3	,1-0,2 b 9	5mm	Ep+Zo		Sons 4	tige		Kornsur 108	nme
G = Gr Epidote	anat; Z = 2 e (+ Zoisit	Zirkon (+ Klino:	+ Xen zoisit +	otim + M + feinkör	lonazi nige /	it), T = Aggreg	Turma ate vo	alin; R in Pun	= Rutil	; Ap = /	Apatit; nstige	St = Sta in RA 1	aurolith; /1 (Kom	Di = Dis zahl): in	sthen	And amt C	= Anda hlorite	lusit; H (5), Ch	lbi = i Ilorito	Hornb ide (2))	Ep+Zo	•
sehr ge oft brau	eringe SM- unfleckia, i	Menge nehr Ei	, sehr pidot a	wenige i Is Zoisit	in der ; Grar	Fraktinat we	on >0, nig and	1mm; gelöst	deutlic mit z.T	her Gel braun	s Schv halt an ien Üb	magne erzügen	tische N Karbor	linerale natkörn	n; mä er	ßiger	Opaka	nteil, H	lornbl	ende	deutli	ch angel	öst und
1.3.4	Röntge	ndiffr	aktio	ns-An	alys	e (RI)A) -	Ton	miner	ale (M	lethe	ode R	AST 1	990, 1	993)								
Dest				Relative	Tonn	nineral	gehalt	e in de	er Frak	tion <0,	002mr	n [Rel	%]			12.1		Komm	nentar	r .	0.10	9111119	
RA 1/1	By-T 0-14	cm	M	47	21	9	16	(16	2 Kt	+Gt	32		klein	-	Kris	näßig	on	-	-	Quelif.	anigkeit	_
			1							11.22		10						1044.10		1. 100			

ML = Mixed-layer-Material, d.h. unregelmäßige Wechsellagerungsminerale aus Illit und Smektit, reich an Illit (>60 Rel.-% Illite); 2) Illite (10 Å-Mineral, teilweise randlich aufweitbar); 3) Kaolinit (7 Å-Mineral); 4) Chlorit (7 Å-Mineral) 1)

Reiteralpe - Profil 2: RA_P2, Catena 4 (Saugasse, Ost)

2.1 Profilbesc	nreibung	1		and a second		
Bodentyp:			Rendzir	a-Terra fusca aus	bunter Dachstei	inkalk -Brekzie
Klasse:	-		Terrae o	alcis		
Höhe / Neigung	/ Expos	ition	1540m /	8° / 330° NNW, su	balpine Krummho	Izzone
Lage und Relie	f:		R/H;S	chichtkopfkarst, Ka	rstgasse, Kluftkar	renfüllung
Vegetationsges Bodenvegetation	ellschaft	:/	aufgeloo varia	kertes Alpenrosen-	Latschen-Gebüsc	h (Erico-Rhododendretum hirsuti) mit Sesleria
C-Horizont:			Dachste	inkalk, rot, brekzije	rt der Reiteralm-Fa	azies (Nor)
Profilmächtigke	it:		25cm			
Horizontfolge:			Ah / Bv-	T / mCn		
0-5cm	Ah		Graswu	zelfilz, kaum Feine	rde, krümelig, star	k humos; schluffiger Lehm
5 - 25cm	(Bv-)T	/ mCn	durchwu Glimmer	rzelt, mittelhumos; u. Feinsand führer	dicht, polyedrisch nd; nach unten ve	, plastisch, skelettfrei,schwach karbonathaltig, reinzelt Steine, braunrot, 5 YR 5/6
>25cm	mCn		roter Da	chsteinkalk, brekzii	ert, mit Residualto	ontapeten; 5 YR 7/6
2.1.1 Probene	ntnahme	1				
Probe		Horizont	Entnahn	netiefe	Probennummer	
RA 2/1 27.08.0	1	Bv-T	1-15cm		RA 2/1 (Bv-T 0-	15cm)
RA 2/2 27.08.0	1	mCn	>15cm		RA 2/2 (mCn >	15cm)
2.1.2 Bodenfa	banspra	ache nach l	UNSELL	Soil Color Chart (2	2000)	
Probe		trocke	n		naß	
RA 2/1 Bv-T	1-15	5 YR	5/6	yellowish red	5 YR 4/6	yellowish red
RA 2/2 mCn	>15	5 YR	7/6	reddish yellow	5 YR 6/8	reddish yellow

Reiteralpe – Profil 2: RA_P2, Catena 4 (Saugasse, Ost) 2.2 Bodenanalytische Werte

2.2.1 K	orngröf	Senve	rte	ilung																		
Probe			1			Korng	größe	n (µm)	in G	ew% (Fe	einb	oden b	zw Lô	sungsre	siduun	ns LR	des a	nsteh	enden	Gestei	ns)	
Nr.	Horizon	t [cn	1	Skele >2000	tt D	gS 2000-1	630	mS 630-2	200	fS 200-63	6	gU 3-20	mU 20-6,3	fU 6,3	-2	T < 2	S	1	J		T	
RA 2/1	By-T	1-1	5	2,3		0		0		0	1	6,6	28,2	28,	2	26,7	0	7	3		26,7	
RA 2/2	mCn LR	>15		0		1,2	e i	12,	5	8,2	1	0,0	17,1	28,	0	33,0	21,9	45	5,1		33,0	
2.2.2 B	odenph	ysika	lis	che In	dice	s	_															
Probe			1			Bod	enph (Ver	ysikalis hältnisz	che I ahlei	ndices n)			Charak (st = st S= Sar	tterisien ark; sw nd; U = §	ing Bo = schv Schluff	denar vach; i ; T = 1	t mi = n Fon; L	nittel) = Lel	h			
Nr.	Horizon	[cr	n]	U/T	1	t/U	U/S	U+1	/S	mU/gU	f	U/gU		Bode	nart			Boden grup	iart- pe		Haupt- gruppe	
RA 2/1	Bv-T	1-1	15	2,7		0,4	100	-		1,7		1,7	st schlu	ffiger Tor	1			Schluf	fton		Ton	
RA 2/2	mCn LR	>1	5	1,4		0,7	2,1	3,	3	1.1		4	sw tonig	gerL				typ. Le	hm	1	Lehm	
2.2.3 B	lodench	emis	che	Wert	e			1			-											
Probe										Kenny	verte	des Fe	inboder	ns /Lösun	gsresid	luums	LR		_			_
		-		pH (Ca	iCl ₂)	CaC [%	O3 	Corg [%]	org	. Substanz [%]	1	N %]	C/N	Dithi	onit-Ext	raktion	[%]	0	Feo	xtr.	Fed/ Fed	
Nr.	Horizon	t [cr	n]				_	0.00	+	5.0	0	22	40.0	A	+	Bd	Мп	-	[%]		0.1	-
RA 2/1	BV-1	1-	15	6,8		3,1		2,90	-	5,0	0	,23	12,0	n.o.	3	20	n.o.	-	1,30		0,4	_
RA 2/2	mCn	>	5	7,9		81,	8	0,12		n.D.	n	i.b.	n.b.	n.b.	In	.D.	n.b.	1	n.b.		n.b.	_
Probe										KAK	eff (n	nmol/kg	1									
A.L.	Unional	Ter	1	к	[%]	Na	[%]	Mg	[%	Ca	1	[%]	AI	[%]	H+	[%	Σ	KAK	int.	E	asen-	
NF. RA 2/1	By-T	1-	nj 15	0	0	1.29	1.0	1.53	13	2 125.1	8	96.7	0.31	0.2	0.79	0.6	1	29.10		satu	gung [%] 99.1	_
0.0 8/81.	aralana	lutio	ha	Mart		241	2004	nonflu	-	Tona A	nah	100 /0	EAL	415		1 414			-			-
2.3 1111	leralana	iyuso	ne	vyeru	e, 4		tom	gennu	ores	Hauntola	men	se (n	e (%)	_								-
	T 1	-	-	-	_	-	-	-	-	Tiaupicie	I	ngenan	C [/o]	1			1	-	-	1	_	_
Probe	SiOz	Al ₂ O ₃	Fe	tal	=eO	Fe ₂	D ₃	MnO	MgO	CaO	N	la ₂ O	K ₂ O	TiO ₂		P2O5	H ₂ C) ig	oss on nition	sum	of conc.	
RA 2/1	60,22	16,92	7	,04	1,40	5,4	5	0,12	2,20	0,80		0,87	2,72	1,1	0	0,11	2,0	0	6,79	-	92,33	_
NA 2/1	1 1,00 1	4,07		14	-0,10	1 11.3		-0,01 [0,01	Spurenele	men	tgehalte	[ppm]	1 0,2	-	0,04	10,1		T1,20	-	00,00	-
Probe	Ba	Ce	Co	Cr	C	u G	all	a	b I	Nd Ni		Pb	Rb	SO3	Sr	Th	U	٧	Y	Zn	Zr	
RA 2/1	387	102	23	13	5 2	27 2	20	49	23	44 79)	30	117	<0,10	119	15	<5	140	39	106	302	1.7
RA 2/1	<50	<50	<10	0 <1	5 <	10	5	<15	6	<10 13	1	<15	<15	<0,10	194	<10	<5	30	<5	17	40	-
Probe	Geochei	nisci	le I	SiO ₂ /	Fe	0/	CaO		a0/	Na ₂ O/	1	K20/	CaO+	Na ₂ O+K	O/Ab	7	SiO ₂ +	AlaOa		a0+	Sr/Ba	-
11000	-	-	A	Al2O3	Fe	203	MgO	K	20	Al ₂ O ₃	1	Na ₂ O	000	11420-11	Lon lize		+Fe2O	3	N	lgO	Circa	
RA 2/1	By-T 1-150	m	+	3,65	0	,25	0,	36	0,29	0,05	-	3,13	-	0,26	5	-	8	4,18	-	3,00	0,31	-
233	Schwern	niner	ale	(Meth	ode	RAS	T 19	90 19	993	-	1	-	1			يا د		,91	_	00,02	0,00	-
21010	ounion	inter	aiv	lunoti	louo	1010	1 10	Gesam	spek	trum (Korn	zahl-	-%); F	raktion	0,1-0,25	nm						-	
Probe ¹⁾	DUTA	G	1	Z	T	F	2	Ар	St	Di		And	Hbl)	Ep+Zo		Sons	tige 2)		Kor	nsumme	
15cm	DV-1 1-	9		3	1	3	£	4	2	1		0	25		45		ų	8			300	
	-					R	estsp	ektrum (hne (Granat (be	zoge	en auf 1	00%); F	raktion 0	1-0,25	mm				-		
Probe ¹⁾ RA 2/1	Bv-T 1-			Z 3	T 1	R 3		Ap 4	St 2	Dí 1		And 0	Hbl 27	E	p+Zo 49	1	Sonstig 9	je		Korn	summe 273	
G = Gra Epidote (10), Py	inat; Z = Z (+ Zoisit + roxene (2)	rkon (+ Klinoz	Xe	notim + t + feink	Mona örnig	azit), T e Aggre	= Tur egate	malin; R von Pun	= Ru npelly	til; Ap = Ap it); ¹⁾ = Kor	atit; ngrö	St = St ße < 0.	aurolith; 1mm; ²⁾	Di = Dist Sonstige	hen, A in P2/	nd = Ar 1 (Korn	ndalus zahl):	it; Hbl insges	= Horni amt Ch	olende; lorite (1	Ep+Zo = 2), Chloritoid	le
	oringo Chi	Mana		onice in	dor	Traktier	>0.4	Be	schre	eibung des	Sch	wermin	eralspe	klrums	aich K	ornor h	Sufia -	nit 7a	kooräa	dom no	lykristalling	-
H	ornblende-	Aggree	ate	; zahlrei	ch ve	rerzte	Leicht	minerale	mitr	otbraunen	Krus	sten; Gi	ranat an	gelöst mi	tz.T.b	raunen	Überz	uit Zac	1 Rutil-	Kniezw	illing	
2.3.4	Röntgen	diffra	kti	ons-A	naly	se (F	(DA)	- Ton	nine	erale (Me	etho	de R	AST 1	990, 19	93)							
1.00				Relative	Ton	nineral	gehal	le in der	Frakt	ion <0,002	mm	[Rel%					Ke	mmer	lar			
Probe RA 2/1	By-T 1-15	m	M	23	28	4)	18	C	3)	∑ Kt+C	AC AC	9		klein	K	nstallis mäßi	ation	-		Quellf	anigkeit	
1) N	Lm = Mixe	d-layer	-Ma	iterial, d	.h. ur	regelm	äßige	Wechs	ellage	rungsmine	arale	aus Illi	und Sn	nektit, reid	ch an ll	lit (>60	Rel9	6 Illite)	; 2) (11)	te (10 A	-Mineral,	_
te	ilweise rar	ndlich a	ufw	eitbar);	3) Ka	olinit (7	A-Mi	neral); 4) Chl	orit (7 A-M	linera	al)				1.1		-				_

Reiteralpe – Profil 3: RA_P3, Catena 3 (Alpasteig, West) 3.1 Profilbeschreibung

			,					-									
Bodentyp:				Ren	dzina	a-Terra	a fus	ca übe	r roten	n Dachs	teinka	alk					
Klasse:				Terr	ae ca	alcis					-						
Höhe / Hangneig	una / I	Expos	ition	165	0m / :	2º Kars	stspa	Ite/ . st	ubalpin	e Krumn	nholzz	one					
Lage und Relief:				R/H	H: So	chichtk	opfka	irst. Klu	ftfüllun	a							
Vegetationsgese	llschaf	ft /		aufo	elock	(ertes	Alpen	rosen-l	atsch	en-Gebü	sch (E	rico-R	hodo	dendre	etum hir:	suti) m	nit Sesleria van
Bodenvegetation	1.																
Profilmächtigkeit				15cr	m												
Horizontfolge:			-	Ah/	Ah+I	By-Tc/	mC	r									
0.4	LAL			Com	7411-1	SV TOT	mov								_		
0-1cm	An			Gras	swurz	centriz			int of the	11.000		L.B.Corb		El. de		·	6 T
1 - 15cm	An+t	3V-1C		subr einz Schl	oolye elner luff; b	drisch, Geste raun 7	Kalk Kalk insbri 5 YF	t, stark -Pseud uchstüc R 3/3	omyce cken >2	, Humus I, stark k 2mm zun	arbon lehme	nlieren athaltig nd; Gli	g, ab mme	13cm S 13cm S ar u. Fe	en; mais Skelettg insand f	ig dici ehalt i führen	nt, krumelig bis in Form von d; stark tonige
>15cm	mCv			rote Res	r Dac iduali	hstein! tontape	kalk z	T. in B	Bruchst YR 8/4	ücke ver	wittert	, geht	in ko	mpakte	e Schich	trippe	n mit
3.1.1 Probenent	nahm	e	-	1													
Probe	Horizo	nt	E	ntnahn	netief	e	Prob	ennumr	mer								
P3/1 30.09.01	Ah+By	-Tc	0	-15cm			P3/1	(Ah+B)	-Tc 0-	15cm)	_	-					
P3/2 30.09.01	mCv		>	15cm			P3/2	(mCv >	15cm)	1						_	
3.1.2 Bodenfarb	anspr	ache	nach	MUN	ISEL	L Soil	Colo	r Charl	t (2000)							
Probe			tn	ocken					1	naß							
RA 3/1 Ah+By-	Tc	1-15	7	5 YR 3	3/3		dar	k brown	1-1	7,5 YR 2	5/3	ver	/ dark	brown			
RA 3/2 mCv		>15	5	YR 8/4	4		pinl	ĸ		5 YR 7/8		red	dish y	ellow			
3.2.1 Korngröße	envert	e vver eilung	te 9	Kom	rößer	[curs] is	n Gov	. % (Ee	inhoder	haw Lö	eunger	And the second	melF	dos ar	stehend	en Ge	stoins)
	2.11	01.1	n T	Nong	TOISEI	(Thul)	TOEW	V 70 (1 e	inbouer	DZW. LU	Ja	coluuu	- T	ues ai	Isterienu	en de	stemsj
Nr. Horizont	[cm]	>200	ett 10	gS 2000-6	30	mS 630-20	00 2	1S 200-63	gU 63-20	mU 20-6,3	6,3	-2 <	2	S	U		T
RA 3/1 Ah+Bv-Tc	1-15	54,1		5,3		1,9		5,7	35,2	12,6	17.	5 17	,5	12,9	65,3		21,6
RA 3/2 mCn LR	>15	0		0		0		4,5	27,2	4,5	27	,0 32	,3	0	67,7		32,3
3.2.2 Bodenphys	sikalis	che li	ndice	s							-			_			
Probe				Bode	enphy (Verh	sikalisc ältnisza	he Inc hlen)	fices		Charak (st = st S= Sar	kterisie ark; sv nd; U =	rung Bo v = sch Schluf	odena wach; f; T =	nt mi = m Ton; L	ittel) = Lehm		
Nr. Horizont	[cm]	U/T		T/U	U/S	U+T/	S	mU/gU	fU/gL	J	Bode	enart		Bod	lenart- uppe		Haupt- gruppe
RA 3/1 Ah+Bv-Tc	1-15	3,0	1.10	0,3	5,1	6,7		0,4	0,5	st tonig	jer U			Ton	schluff		U
RA 3/2 mCv	>15	2.1		0,5	14	-		6.0	8.0	st schlu	uffiger	Т		Sch	luffton		Т
222 Bodenahar	nicoha	Mar	10	1001	-		_	111	1 414	10.000	9-1				Constant of the	1	
J.2.3 Douencher	msche	a AAGL	te				1.16		1. 1	- take to		100 1000	-1.4			-	
Probe			_		-		K	ennwer	te des F	-einboder	ns /Los	ungsre	siduu	ms LR			
Nr Horizont	icml	pł (Cat	H Cl ₂)	CaC([%]	O3	Corg [%]	Sub	org. ostanz [%]	N [%]	C/N	Dith	nionit-E [%	xtrakt	ion Mn	Oxalat-E Fe _o [%]	Extr.	Feo/ Fed
RA 3/1 Ah+Bv-Tc	1-15	7,	7	10,3	3	15,01	2	5,8	1,27	11,8	n.b.	1,5	0	n.b.	1,30	0.1	0,86
RA 3/2 mCv	>15	7.	9	89.4	1	0,08	r	n.b.	n.b.	n.b.	n.b.	n.b		n.b.	n.b.	1	n.b.
Prohe					_	10.0	-	Tente a	1	1		1.00	1	1		1	1031
(UDE							_	KAKeff	[mmol/	Kg]							
Nr. Horizont	[cm]	К	[%]	Na	[%]	Mg	[%]	Са	[9	%] Al	[%]	Ĥ⁺	[%]	ΣΚΑ	AK	sä	Basen- ttigung [%]
RA 3/1 Ah+Bv-Tc	1-15	0	0	2,25	2,3	2,45	2,6	90,36	6 94	1 0,50	0,5	0,41	0,4	95,9	7		99,0
		-			-												

Reiteralpe – Profil 3: RA_P3, Catena 3 (Alpasteig, West) 3.3 Mineralanalytische Werte

3.3.1 Rönt	genflu	oresz	enz-A	naly	se (RF/	A)		Нац	ptelem	entgeha	te [%]	-							_	
Probe	SiO2	Al203	Fo.O.	Total	FeO	Fe ₂ O ₃		MnO	MgO	CaO	Oren		K₂O	TIO2	P ₂ O ₅		H ₂ O	Loss on ignition	sum of	conc.
RA 3/1 Ah+Bv-Tc 1-15cm	36,41	18,2	29 7	,29	1,10	6	,01	0,18	1,42	2,2	9 (),55	1,43	0,89	0,42		4,32	30,16	(59,44
RA 3/2 mCv >15cm	1,68	1.1	8 0	,48	<0,10	n	.b.	<0,01	0,51	53,0)1 <	0,20	0,08	0,05	0,05		0,16	42,31	ł	57,13
Dealers	1.0-	0-	0-	1 0.	1.0.1	0.	TTA	Spure	neleme	entgehal	e [ppm		1 00	1.0	1 71	1.11	1. 17	TW	17.1	7.
Probe DA 2/1	ва	Ce	Co	Ur	Cu	Ga	La	IND	ING	INI	PD	KD	SU3	Sr	In	0	V	Y	Zn	<u></u>
Ah+Bv-Tc 1-15cm	239	144	16	118	14	21	79	24	55	45	92	100	<0,10	93	17	<5	114	128	427	269
RA 3/2 mCv >15cm	<50	<50	<10	<15	<10	<5	<15	<5	<10	<10	<15	<15	<0,10	109	<5	<5	9	<5	13	<10
3.3.2 Geoc	hemis	che Ir	idices	5				1	-			-				-	1	-	-	
				-		_		Ge	ochem	ische Ind	lices									
Probe	74	SiO ₂ / Al ₂ O ₃	F	eO/ e ₂ O ₃	CaO/ MgO	1	CaO/ K ₂ O	Na ₂ O/ Al ₂ O ₃	K	(20/ Na20	CaC	+Na ₂ O)+K2O/Al2(D ₃ SiO: +Fe	2 + Al2O 2O3	3	CaO+ MgO	Sr	/Ba	
RA 3/1 Ah+By 1-15cm	/-Tc	1,9	9	0,15	1,6	1	1,60	0,03	3	2,60		2,	92		61,99		3,7	1	0,3	39
RA 3/2 mCv >	15cm	1,4	2	-	103,	94	662	-		161	1-	-			3,34	_	53,5	2	-	
3.3.3 Schw	vermin	erale	(Meth	odel	RAST 1	990,	1993)				_									_
B. 1. 4		-	-	T		Ge	samtspe	ktrum (Kornza	hl-%);	Fraktion	10,1-0	,25mm	-		~	-		10 VI VI	
Probe 1 RA 3/1 Ah+E	Bv-	G 20	6	3	3	Ар 3	6		0	And 0	Ht 36	5	Ep+20 16	50	nstige 7	2)		Korns 6	umme 9	Э
TO T TOOM		_	-		Rest	spektr	um ohne	Grana	l (bezo	gen auf	100%);	Fraktio	on 0,1-0,25	õmm	_			-	-	
Probe 1)			Ζ	T	R.	Ap	S	St	Di	And	Ht	J	Ep+Zo	Son	stige		K	Cornsu	mme	
RA 3/1 Ah+E Tc 1-15cm	Bv-		9	9	0	0)	0	0	27	7	55		0			11		
G = Granat; 2	Z = Zirko	on (+ Xe	enotim	+ Mon	azit), T =	Tum	nalin; R	= Rutil;	Ap = i	Apatit; S	t = Sla	urolith;	Di = Dist	hen, And	d = And	alusit	Hbl =	Hornbl	ende; E	Ep+Zo =
Epidote (+ Zo	isit + Klin	nozoisit	+ feinki	irnige	Aggregat	e von	Pumpel	lyit);												
¹⁾ Achtung nur ²⁾ Sonstige in	sehr ge RA 3/1 (ringe Ko Kornzal	ornzahl 11): kein	desha e Anga	alb Aussa abe	igekra	ft einge	schränk	t											
			-				Besch	reibung	des S	chwermi	neralsp	ektrum	S							
 mäßige sehr ka zahlreid Zirkone 	SM-Me rbonatre he verei sehr kle	nge, we ich (mik zte Leic in, vere	nige in ritische chtmine inzelt s	der Fra Körne rale un phärisc	aktion >0, r); opakri id Karbor che Kiese	1mm, eich, c nate elalger	blaß-ge pake Kö 1	lblich, g órner m	ganz ve eist gut	reinzelt gerunde	magnet et	ische K	(örner							
3.3.4 Rönt	gendif	fraktio	ons-A	nalys	e (RDA	4) - T	onmin	ierale	(Met	hode F	AST	1990.	1993)							
Probe		Relativ	e Tonn	nineral	gehalte in [Rel9	n der F	Fraktion	<0,002	mm					Kom	mentar					
RA 3/1 Ah+By 1-15cm	/-Tc	MLinit 1)	llfit	z) keine	Kt 3) Aussag	Ct 4) e mög	ΣKt+	Ct		Gesa	mtmen	ge	Kris	tallisatio	n	_	Q	uelliähi	gkeit	_
1) MLast = 1 2) Illite (10 3) Kaolinit 4) Ghlorit (10)	Mixed-la À-Mine (7 À-Min (7 À-Min	yer-Mat ral, teilw heral); eral)	erial, d. /eise ra	h. unre ndlich	egelmäßi aufweitba	ge We ar)	echsellag	gerungs	minera	le aus II	it und S	mektit,	, reich an I	Illit (>60	Rel%	llite)				

Reiteralpe – Profil 4: RA_P4, Catena 3 (Reitertrett)

4.1 Pr	oflibesch	reibung	9	_	-	_		-		_						-		
Boder	ntyp:			_	Bra	uner	de aus	a äoli	scher D	ecks	chich	it (Ac	olium-k	Colluv	ium)	über	Dachstei	inkalk
Klasse	9:				Bra	uner	de					-	-		-			
Höhe	/ Neigung	/ Expos	sition		1650	0m/	8°/20	0°S/	Unterha	ing, s	ubalp	oine k	Krummi	nolzzo	ne			
Lage	und Relief			-	R/H	+; So	chichtk	opfka	arst									
Veget	ationsgese	ellschaf n:	t/		aufg	elock	(ertes	Alper	nrosen-L	atsch	en-Ge	ebüs	ch (Erid	co-Rho	odode	endrei	tum hirsu	ti) mit Sesleria var
Profilm	nächtigkei	t:		-	28cr	m	-					-						
Horizo	ontfolge:				Ah/	Bv1	/ Bv2 /	IImC	'n						-		_	
0	Com	Ab	_		ovtr	om di	Irohua	Internet	Crocwi	ITAL	ila oto	ark h	imon I	(ouro)	Toino	rda: k	rimolia	skolottfrai sahwar
0	- 2011	All			karb	onat	haltig,	glimn	nerführe	nd; to	niger	Sch	luff; gra	ubrau	n 10	YR 5/	2	skelettilei, sonwat
2-	- 25cm	BV1			karb 6/4	onat	zelt, si naltig;	tark h stark	glimmer	- und	feins	er, kru sandf	umelig ührend	bis sul ; schlu	opoly	edrisc ehmig	ch, skeleti er Sand;	gelbbraun 10 YR
25	– 28cm	Bv2			mäß	lig du karb	rchwu onatha	rzelt, Itia: (stark hu Glimmer:	mos; fühlt	mäßig Dar tor	ig dic niaer	ht, krüi sandi	nelig l a-lehm	ois su niaer :	bpoly Schlu	edrisch, s ff: hellbra	schwach skelett- un 10 YR 7/4
>	28cm	IImC	n		rota	eäde	rter Da	chste	einkalk, v	venia	ande	witte	ert: 5 YI	3 8/2			01 (19/19/19/19/19/19/19/19/19/19/19/19/19/1	
4.1.1	Probenen	tnahme	9		1.0.9				entrodity (ango							
Probe		Hori	zont	E	ntnahn	netief	9	Prot	ennumm	er	-	-						
RA 4/1	30.09.01	Bv1	1.1.1.1	2-	25cm			RA	4/1 (Bt1 2	-25cm	n)							
RA 4/2	30.09.01	Bv2		25	5-28cm	1		RA	4/2 (Bt2 2	5-28c	m)							
RA 4/3	30.09.01	IImC	n	>2	28cm	1.5		RA	4/3 (mCn	>28cr	m)							
4.1.2	Bodenfar	banspra	ache	nach	MUN	SEL	. Soil	Colo	r Chart (2000)					_		
Probe			1	trock	en					ſ	naß							
Nr.	Horizor	nt [cm	1	E.														
RA 4/1	Bv1	2-25	5	10 Y	R 6/4	10.0	light y	ellowi	sh brown	7	7,5 YR	\$ 5/6		stror	ig bro	wn		
RA 4/2	Bv2	25-2	28	10 Y	R 7/4		very p	ale br	own	7	7,5 YR	R 5/6		stror	ng bro	wn		
RA 4/3	IImCn	>28		5 YR	8/2		pinkis	h whit	е	5	5 YR 8	3/3		pink				
4.2. B	odenanal	vtische	Wer	te: 4	.2.1 K	orno	rößer	verte	eiluna					-				
Probe		,			Korne	rößer	uml i	in Gev	N-% (Feir	nhode	n hzw	lös	unasres	iduum	IRC	les an	stehenden	Gesteins)
Na	Hadarak	Terrel 1	Ohal	n T	-D	TOISCI	(paul)	T	40	-U	IT DAW			T	1	CO CITA	Stericingen	Ocatomay
	Horizont	[cm]	>200		gs 2000-6	630	630-2	00	200-63	gu 63-20	0 20	nu)-6,3	6,3-2	<2	S		U	T
RA 4/1	BAJ	2-25	U	_	0	-	1,0	-	41,3	18,3	1	7,0	12,3	9,5	42	3 4	47,6	9,5
RA 4/2	Bv2	25-28	3,8	5	0	1	1,0		21,5	21,4	2	24,7	17,9	13,3	22	5 6	54,0	13,3
RA 4/3	IImCn LR	>28	0		0	1.11	0		0	0	2	8,6	39,2	32,2	0	6	67,9	32,2
4.2.2 E	Bodenphy	sikalise	che In	dice	s		-											
Prohe				- and -	Boy	lennh	veikaller	he Ind	ines		Ch	arakte	risierun	Boden	art			
TODE					00	(Ver	nältnisza	ahlen)	1065		(st S=	= star Sand	k; sw = s ; U = Sct	chwach hluff; T =	; mi = = Ton;	mittel) L = Lef	m	
Nr	Horizont	[cm]	(1/1	11	T/U	U/S	11+T	IS	mU/all	fU/al	U		Bodens	irt		Bod	enart-	Haupt-
DA 40	Det	Touril			0.0		0.11	-	noigo	ioign		1.00			-	gru	ippe	gruppe
RA 4/1	BV1	2-25	5,0	1 2	0,2	1,1	1,3		0,9	0,7	sch	nluttig-	lehmiger	S		San	alenm	L
RA 4/2	Bv2	25-28	4,8		0,2	2,8	3,4	9	1,2	0,8	san	ndleh	nmiger Se	chluff	- 4 6	Lehm	schluff	0
RA 4/3	IImCn LR	>28	2,1	-1	0,5	•	•		1.	10	st s	schluff	iger Ton	-		Schl	uffton	T
4.2.3 E	Bodenche	mische	Wert	le														
Drohe									Kennwe	rte des	s Feinbo	odens	/Losuno	sresidu	ums L	R		
Prope			DH 10	CLUD	Con	0.1	Core	lore 1	Substand	N		/M 1	Ditte	nit E-t	aktion	1	Ovelet Fut	E Fal
			Ihu (C	au(2)	[%]	03	[%]	org.	[%]	1%1	G	/19	Dittill	I%1	aktion		Ee-	Feat
			1.1		[70]		T val	1.1	L'AJ	Tvol		F	AL	Fea	M	n	[%]	1.60
Nr.	Horizont	[cm]							1				1.1	. 00	1		1.4	
RA 4/1	Bv1	2-25	5	2	3,1		2,97	12.	5,1	0,26	11	1,4	0,26	1,41	0,0)5	0,33	0,23
RA 4/2	Bv2	25-28	6	0	3,4		3,20		5,5	0,29	11	1,0	0,22	1,11	0,0)4	0,33	0,30
RA 4/3	IImCn LR	>28	8	1	96.	1	0.03		n.b.	n.b.	0.1	b.	n.b.	n.b.	n.	0.	n.b.	n.b.
(A.T.W.A.	ninen en			1			elas.	1		June:	1 0.		(108)	0.91	1 100		1144	1 1918.
Probe				-	-		_		KAKeff	mmol/	kg]							
Probe			1.1	10/1	Na	[%]	Ma	1%1	Ca	1	%1	AI	[%]	H*	[%]	5 KA	к	Basen-
Probe			K	170	1 1 1 1 1	1 1 1 1 1		1 1.41		1.1	-9 I I		4.44	(A		-	- 1	satigung %
Nr.	Horizont	[cm]	K	[%]	4.07	10	1.00	0.0	00.70	1 0	40	0.40	0.0	00	101	00 40		00.0
Probe Nr. RA 4/1	Horizont Bv1	[cm] 2-25	K O	0	1,37	1,6	1,68	2,0	80,75	9	4,8 (0,49	0,6 (),86	1,0	85,16	5	98,8

Reiteralpe – Profil 4: RA_P4, Catena 3 (Reitertrett) 4.3 Mineralanalytische Werte

024 17, 116 116 116 116 116 102 102 102 102 102 102 102 102	31 Co 22 1dice / 32 (Met Z 10	Cr 7,22 Cr 151 95 FeO/ FeQ3 0,14 hode F T	0,89 0,89 0,89 17 17 CaO/ MgO 0,7 RAST 1	6, Ga 21	21 La 57 CaO/ K ₂ O	0,16 Spurenet Nb 26 Geoci Na ₂ O/	1,71 emen Nd 50	1,22 ntgehalte Ni 68	0,80 0,80 Pb R 38 10	02 2,00 5 SO3 3 <0,10	01 1,15 Sr 115	0,15 Th 12	U <5	0H 2,45 V 142	uo ssor 10,33 Y 67	jo uns Zn	9,51
17, Ce 116 :he li SiO ₂ Al ₂ O 3, trale G 9	31 22 ndice / 33 32 (Met Z 10	7,22 Cr 151 PS FeO/ Fe2O3 0,14 hode F	0,89 Cu 17 CaO/ MgO 0,7 RAST 1	6, Ga 21	21 La 57 CaO/ K ₂ O	0,16 Spurenel Nb 26 Geocl Na ₂ O/	1,71 emen Nd 50	1,22 ntgehalte Ni 68	0,80 [ppm] Pb R 38 10	2,00 5 SO ₃ 3 <0,10	1,15 Sr 115	0,15 Th 12	U <5	2,45	10,33 Y 67	۶ Zn	9,51
Ce 116 the line SiO ₂ Al ₂ O 3, trale G 9	Cc 22 ndice / 32 (Met Z 10	Cr 151 25 FeO/ Fe2O3 0,14 hode F	Cu 17. CaO/ MgO 0,7 RAST 1	Ga 21	La 57 CaO/ K ₂ O	Spurenel Nb 26 Geocl Na ₂ O/	emen Nd 50	Ni 68 sche India	[ppm] Pb R 38 10	5 SO3 3 <0,10	Sr 115	Th 12	U <5	V 142	Y 67	Zn	
Ce 116 :he li SiO ₂ Al ₂ O 3, rale G 9	Cc 22 ndice 3 32 (Met 2 10	Cr 151 PS FeO/ Fe2O3 0,14 hode F	Cu 17 CaO/ MgO 0,7 RAST 1	Ga 21	La 57 CaO/ K ₂ O	Nb 26 Geoch Na ₂ O/	Nd 50 hemis	Ni 68 sche India	Pb R 38 10	b SO ₃ 3 <0,10	Sr 115	Th 12	U <5	V 142	Y 67	Zn	
116 she li Al ₂ O 3, rale G 9	22 ndice / 3 32 (Met Z 10	151 FeO/ Fe2O3 0,14 hode F	17 CaO/ MgO 0,7 RAST 1	21	57 CaO/ K ₂ O	26 Geocl	50 nemis	68 sche India	38 10	3 <0,10	115	12	<5	142	67	1.000	L
SiO ₂ Al ₂ O 3, rale G 9	/ 332 (Met Z 10	FeO/ Fe2O3 0,14 hode F	CaO/ MgO 0,7 RAST 1	1	CaO/ K2O	Geocl Na ₂ O/	nemis	sche India	ior.				-	-		145	344
SiO: Al ₂ O 3, rale G 9	/ 32 (Met Z 10	FeO/ Fe2O3 0,14 hode F	CaO/ MgO 0,7 RAST 1	1	CaO/ K ₂ O	Geoch Na ₂ O/	hemis	sche India	inc.							-	
SiO: Al ₂ C 3, rale G 9	/ 32 (Met Z 10	FeO/ Fe ₂ O ₃ 0,14 hode F	CaO/ MgO 0,7 RAST 1	1	CaO/ K ₂ O	Na ₂ O/	K	and the second sec	es								
3, rale G 9	32 (Met Z 10	0,14 hode F	0,7 RAST 1	1	and the second second	Al ₂ O ₃	Na	20/ la20	CaO+N	a20+K20/Al2	O ₃ SiO +Fe	2 + Al2O 2O3	3	CaO+ MgO	S	r/Ba	
G 9	(Met Z 10	hode F	RAST 1		0,61	0,05	1.00	2,50		0,23	· · · ·	82,06	Central I	2,93	3	0,3	7
G 9	Z 10	Ť		990,	1993)	0.000											
G 9	Z 10	Ť		Ges	samtspel	ktrum (Kor	nzahl	I- %); FI	aktion 0,1	-0,25mm			-				
9	10		R	Ap	St	Di	1.1.1	And	Hbl	Ep+Zo	S	onstige	2)	-	Korns	umme	
10		4	7	3	3	1		0	9	52		2			3	00	
	-		Rest	spektn	um ohne	Granat (b	ezoae	en auf 10	0%): Frak	tion 0.1-0.2	mm	-			-	-	_
1	Z	T	R	Ap	S	St D	Di	And	Hbl	Ep+Zo	Son	stige		1	Kornsu	mme	
	11	4	8	3	4	4	1	0	10	57		2			27	2	
(+ Xer	notim -	+ Monazi	t), T = Ti	Irmalin	n; R = R	util: Ap = A	patit;	; St = Sta	urolith; Di	= Disthen, A	nd = And	lalusit;)	Hbl =	Hornble	nde; E	p+Zo =	Epido
teinko	nige /	Aggregat	te von Pu /1 (Komz	impelly ahl): (lyit); Chloritoic	te (6)											
1 . 00	inouge		T (HOTTE	anny	Besch	reibuna de	s Sch	hwermine	raispektri	ims							
Meng ranat, Spekt ein Ka gnetis	a, gelt Stauro rum rbona chen I	olich-brau olith, Zirko t	in, nur w on, Epide n. 3 Rutil-	enige ot; gro Kniez	Körner > ße Meng willinge	>0,1mm ge an Zoisi	it sowi	vie frische	grüne Ho	ornblende							
rakti	ons-	Analys	e (RDA) - T	onmin	erale (N	letho	ode RA	ST 199	0, 1993)						-	
Rel	ative	Tonmin	eralgeh	alte in	der Fra	aktion					Komm	nentar					
ML	1)	llit 2)	Kt 3)	Ct 3)	5K	t+Ct	G	Gesamtn	nenge	Krist	allisation			Qu	ellfähi	akeit	
4.4		12	28	16	-	44		hoc	1		aut				kaun	1	-
ain gr ra	Rel	h Karbonat ietischen M ietischen M ietisc	h Karbonat letischen Mineraler iktions-Analys Relative Tonmin <0,00 ILIII 1) Illit 2) 44 12 rer-Material, d.h. al, teilweise rand	A Karbonat letischen Mineralen, 3 Rutil- letischen Mineralen, 3 Rutil- letischen Mineralgeh: <a center;"="" href="https://www.example.com/interalgeh:style=" text-align:="">ktions-Analyse (RDA) Relative Tonmineralgeh: <a center;"="" href="https://www.example.com/interalgeh:style=" text-align:="">ktions-Analyse (RDA) <a href="https://wwww.example.com/i</td> <td>A Karbonat letischen Mineralen, 3 Rutil-Kniez Iktions-Analyse (RDA) - T Relative Tonmineralgehalte in <0,002mm [Rel9 ILINI ¹) Illit ²) Kt ³) Ct ³ 44 12 28 16 rer-Material, d.h. unregelmäßlig al, teilweise randlich aufweitba</td> <td>Arbonat In Karbonat In Karbonat In Karbonat In Karbonat Relative Tonmineralgehalte in der Fr <0,002mm [Rel%] ILIM ¹¹ Illit ²¹ Kt ³¹ Ct ³¹ ∑ K 44 12 28 16 rer-Material, d.h. unregelmäßige Wec al, teilweise randlich aufweitbar) mail: Chiefel (7 Å Missen)</td> <td>Arbonat In Karbonat Interischen Mineralen, 3 Rutil-Kniezwillinge Interischen Mineralen, 3 Rutil-Kniezwillinge Interischen Karbona (Note: Note: N</td> <td>h Karbonat h Karbonat hetischen Mineralen, 3 Rutil-Kniezwillinge hetischen Mineralen, 3 Rutil-Kniezwillinge hetischen Mineralgehalte in der Fraktion <0,002mm [Rel%] h⊥⊪t ¹¹ Illit ²¹ Kt ³¹ Ct ³¹ ∑ Kt+Ct Ct 44 12 28 16 44 rer-Material, d.h. unregelmäßige Wechsellagerungs al, teilweise randlich aufweitbar)</td> <td>h Karbonat letischen Mineralen, 3 Rutil-Kniezwillinge liktions-Analyse (RDA) - Tonminerale (Methode RA Relative Tonmineralgehalte in der Fraktion <0,002mm [Rel%] IL_{IIII} ¹⁾ Illit ²⁾ Kt ³ Ct ³ ∑ Kt+Ct Gesamtm 44 12 28 16 44 hoch rer-Material, d.h. unregelmäßige Wechsellagerungsminerale al, teilweise randlich aufweitbar)</td> <td>h Karbonat letischen Mineralen, 3 Rutil-Kniezwillinge liktions-Analyse (RDA) - Tonminerale (Methode RAST 199) Relative Tonmineralgehalte in der Fraktion <0,002mm [Rel%] IL_{IIII} ¹⁾ Illit ²⁾ Kt ³ Ct ³) ∑ Kt+Ct Gesamtmenge 44 12 28 16 44 hoch rer-Material, d.h. unregelmäßige Wechsellagerungsminerale aus Illit al, teilweise randlich aufweitbar)</td> <td>In Karbonat In Karbonat Intersteiner Mineralen, 3 Rutil-Kniezwillinge Intersteiner Mineralen, 4.h. unregelmäßige Wechsellagerungsminerale aus Illit und Smekt Intersteiner Mineralen Mineralen Intersteiner Mineralen Interste</td> <td>A Karbonat h Karbonat letischen Mineralen, 3 Rutil-Kniezwillinge letischen Mineralen, 3 Rutil-Kniezwillinge letischen Mineralen, 3 Rutil-Kniezwillinge letischen Mineraleghalte in der Fraktion <0,002mm [Rel%] ILIM 1) Illit 2) Kt 3) Ct 3) ∑ Kt+Ct Gesamtmenge Kristallisation 44 12 28 16 44 hoch gut rer-Material, d.h. unregelmäßige Wechsellagerungsminerale aus Illit und Smektit, reich al, teilweise randlich aufweitbar)</td> <td>In Karbonat In Karbonat Interstein Mineralen, 3 Rutil-Kniezwillinge Keitons-Analyse (RDA) - Tonminerale (Methode RAST 1990, 1993) Relative Tonmineralgehalte in der Fraktion <0,002mm [Rel%]</td> Interstein Minerale Kt 31 Ct 31 ∑ Kt+Ct Gesamtmenge Kristallisation 44 12 28 16 44 hoch gut gut rer-Material, d.h. unregelmäßige Wechsellagerungsminerale aus Illit und Smektit, reich an Illit al, teilweise randlich aufweitbar) Note with The Weither Minerale	A Karbonat letischen Mineralen, 3 Rutil-Kniez Iktions-Analyse (RDA) - T Relative Tonmineralgehalte in <0,002mm [Rel9 ILINI ¹) Illit ²) Kt ³) Ct ³ 44 12 28 16 rer-Material, d.h. unregelmäßlig al, teilweise randlich aufweitba	Arbonat In Karbonat In Karbonat In Karbonat In Karbonat Relative Tonmineralgehalte in der Fr <0,002mm [Rel%] ILIM ¹¹ Illit ²¹ Kt ³¹ Ct ³¹ ∑ K 44 12 28 16 rer-Material, d.h. unregelmäßige Wec al, teilweise randlich aufweitbar) mail: Chiefel (7 Å Missen)	Arbonat In Karbonat Interischen Mineralen, 3 Rutil-Kniezwillinge Interischen Mineralen, 3 Rutil-Kniezwillinge Interischen Karbona (Note: Note: N	h Karbonat h Karbonat hetischen Mineralen, 3 Rutil-Kniezwillinge hetischen Mineralen, 3 Rutil-Kniezwillinge hetischen Mineralgehalte in der Fraktion <0,002mm [Rel%] h⊥⊪t ¹¹ Illit ²¹ Kt ³¹ Ct ³¹ ∑ Kt+Ct Ct 44 12 28 16 44 rer-Material, d.h. unregelmäßige Wechsellagerungs al, teilweise randlich aufweitbar)	h Karbonat letischen Mineralen, 3 Rutil-Kniezwillinge liktions-Analyse (RDA) - Tonminerale (Methode RA Relative Tonmineralgehalte in der Fraktion <0,002mm [Rel%] IL _{IIII} ¹⁾ Illit ²⁾ Kt ³ Ct ³ ∑ Kt+Ct Gesamtm 44 12 28 16 44 hoch rer-Material, d.h. unregelmäßige Wechsellagerungsminerale al, teilweise randlich aufweitbar)	h Karbonat letischen Mineralen, 3 Rutil-Kniezwillinge liktions-Analyse (RDA) - Tonminerale (Methode RAST 199) Relative Tonmineralgehalte in der Fraktion <0,002mm [Rel%] IL _{IIII} ¹⁾ Illit ²⁾ Kt ³ Ct ³) ∑ Kt+Ct Gesamtmenge 44 12 28 16 44 hoch rer-Material, d.h. unregelmäßige Wechsellagerungsminerale aus Illit al, teilweise randlich aufweitbar)	In Karbonat In Karbonat Intersteiner Mineralen, 3 Rutil-Kniezwillinge Intersteiner Mineralen, 4.h. unregelmäßige Wechsellagerungsminerale aus Illit und Smekt Intersteiner Mineralen Mineralen Intersteiner Mineralen Interste	A Karbonat h Karbonat letischen Mineralen, 3 Rutil-Kniezwillinge letischen Mineralen, 3 Rutil-Kniezwillinge letischen Mineralen, 3 Rutil-Kniezwillinge letischen Mineraleghalte in der Fraktion <0,002mm [Rel%] ILIM 1) Illit 2) Kt 3) Ct 3) ∑ Kt+Ct Gesamtmenge Kristallisation 44 12 28 16 44 hoch gut rer-Material, d.h. unregelmäßige Wechsellagerungsminerale aus Illit und Smektit, reich al, teilweise randlich aufweitbar)	In Karbonat In Karbonat Interstein Mineralen, 3 Rutil-Kniezwillinge Keitons-Analyse (RDA) - Tonminerale (Methode RAST 1990, 1993) Relative Tonmineralgehalte in der Fraktion <0,002mm [Rel%]	A Karbonat letischen Mineralen, 3 Rutil-Kniezwillinge letischen Mineralen, 3 Rutil-Kniezwillinge letischen Mineralen, 3 Rutil-Kniezwillinge letischen Minerale, 3 Rutil-Kniezwillinge letischen Mineralgehalte in der Fraktion <0,002mm [Rel%] ILIM 1) Illit 2) Kt 3) Ct 3) ∑ Kt+Ct Gesamtmenge Kristallisation 44 12 28 16 44 hoch gut rer-Material, d.h. unregelmäßige Wechsellagerungsminerale aus Illit und Smektit, reich an Illit (>60 al, teilweise randlich aufweitbar)	In Karbonat Keitons-Analyse (RDA) - Tonminerale (Methode RAST 1990, 1993) Relative Tonmineralgehalte in der Fraktion <0,002mm [Rel%]	Narbonat Ietischen Mineralen, 3 Rutil-Kniezwillinge Iktions-Analyse (RDA) - Tonminerale (Methode RAST 1990, 1993) Relative Tonmineralgehalte in der Fraktion <0,002mm [Rel%]	In Karbonat In Karbonat In Karbonat Interstein Mineralen, 3 Rutil-Kniezwillinge Keitons-Analyse (RDA) - Tonminerale (Methode RAST 1990, 1993) Relative Tonmineralgehalte in der Fraktion <0,002mm [Rel%]

Reiteralpe Profil 5: RA_P5, Catena 3 (Alpasteig-Plateaurand West)

5.1 Profil	beschr	eibung	1		0.111															
Bodentyp	;				Flac	hgrü	ndige	Rend	zina-Te	erra fus	sca aus	Resi	idualto	n						
Klasse:					Terr	ae ca	lcis													
Höhe / Ha	angneig	ung / E	xposit	ion	1680)m / 2	° Kars	stspall	te/, sul	balpine	Krumm	holzz	one							
Lage und	Relief:		-		R/H	I; Sc	hichtk	opfkar	st, Kluf	tfüllung	-				_					_
Vegetatio	nsgese	llschaft	1		aufg	elock	ertes /	Alpeni	osen-L	atscher	n-Gebüs	sch (E	rico-R	hodod	dendret	um h	irsut	i) mit	Sesl	eria
Bodenveg	getation	:	-		varia	1				_										
Profilmäc	htigkeit				20cn	n	_													
Horizontfo	olge:				Bv-T	/ mC	n													
0-200	cm	Bv-T			inten karb	onath	urchwi altig;	urzelt, Glimm	sehr st ier führe	ark hun end; mit	nos; má ttel sch	äßig d luffige	licht, k er Ton;	rümeli hellbr	g bis su aun 10	ibpo YR (lyedr 6/4	isch,	schv	vach
>200	m	mCn			anste Verw	eheno vitteru	der we ingsob	ißer D berfläc	achste he + To	inkalk n oncutan	nit Kalz ien; 7, 5	it vert 5 YR 8	neilten 3/1	Haarr	issen u	nd ra	auhe	r		
5.1.1 Prob	enentna	ahme:		1-				-												
Probe	00.02	Horizo	ont	E	ntnahn	netief	9	Prob	ennumm	ner oo		-			_	-	_		-	_
RA 5/1 30.	09.01	BV-1	-	0.	20cm	_	-	RA 5	/1 (Bt 0-	20cm)	-		-	-		-	-		-	
RA 5/2 30,	09.01	Inch		> 5011	NCEL	Pall	Calar	Chart	(2000)	zucm)									_	
5.1.2 B006	entarbar	Ispracr	trock	n MU	NSEL	_ 501	Color	Chart	(2000)	nall					_			_	-	
RA 5/1	By-T	0-20	10 V	R 6//		light	ellowie	h hrow	vn	75VP	4/6		strong	brown						
RA 5/2	mCn	>20	7.5	(R 8/	1	white	GIUWIS		11	7.5 YR	8/1		white	DIOWI						_
52 Bode	nanaly	tische	Werte	in u	-	WINC				1.0 10	U/ I		WING						-	
5.2 1 Kor	naröße	nverte	iluna																	
Probe			mang		Korno	ößen	[um] in	Gew	-% (Feir	boden h	ozw. Lös	sunast	esiduu	msIR	des ans	teher	nden	Geste	ins)	
Nr. Ho	rizont	icm	Skelet	t T	nS.	1	mS	1001	fS	nU	mU	fl	I	r		tonion	10011		inoj	-
110	120111	louid	>2000		2000-6	30	630-20	0 2	00-63	63-20	20-6,3	6,3	-2 <	2	S	U			Ţ	
RA 5/1	Bv-T	0-20	0		0,5		0	1	4,8	29,0	18,5	11	,9 35	5,2 5	5,3 5	9,4			35,2	
RA 5/2 n	nCn LR	>20	0	1	0		0,9		1,0	0	25,6	39	,8 32	2,6 2	2,9 6	5,4			32,6	
522 Pod	onahue	ikalien	ho Inc	licos	_	_		_				-		1	-		-		-	
Probe				T	Bod	enphy (Verh	sikalisci ältnisza	ne Indic hlen)	ces		Charakt (st = sta S= San	erisieru ark: sw d; U = {	ung Bod = schwa Schluff;	enart ich; mi : T = Ton	= mittel) ; L = Leh Bode	m enart-			Hau	pt-
Nr. He	orizont	[cm]	U/T		1/U	U/S	U+T/	S r	nU/gU	fU/gU	minable	Bode	enart	_	gru	ppe	-	-	grup	pe
KA 5/1	BV-1	0-20	1,1		J,0	11,2	1/,0		0,0	0,4	mi schil	iniger i	on	_	Schil	union	-			_
RA 5/2 m	ICn LR	>20	2,0		0,5	22,6	33,8	5	-	- A.	mi schlu	uffiger 1	on	- 1	Schl	uffton			1	
5.2.3 Bode	enchem	nische	Werte	•						_										
Probe								Ke	ennwerte	e des Fe	inboden	s /Lös	ungsre	siduun	ns LR					
			pH (Ca	aCl ₂)	CaCo)3	Corg	org. S	ubstanz	N	C/N	Di	thionit-E	xtraktio	n	Oxala	t-Extr			Fe _o /
					[%]		[%]	1	%]	[%]			[%			F	e _o			Fed
Nr. H	orizont	[cm]										A	Fe	d	Mn	[9	6			
RA 5/1	By-T	0-20	6.4		3.45		4,47	7	72	0,46	9.7	0,27	7.0	1 0	,04	1.	72		1),24
RA 5/2 m	Cnip	>20	80		95.9		0.05		b	nh	nh	nh	nt		h	n	h		-	nb
Duch	ION LIV	- 20	0,0		30,0		0,00			11.0.	11.0.	11.0.	1 114			11.	2			
rope					5			21	KAKeff	mmol/kg	g]									
			K	f9/1	Na	1/01	Ma	10/1	Co	(0/1		19/1	LI+	10/1	TKA			Ba	isen-	
Nr. H	orizont	[cm]	N	[20]	Nd	[70]	ivig	[70]	Ga	[70]	AI	[70]	u,	[70]	ZINA	1	11	sättig	ung	[%]
RA 5/1	Bv-T	0-20	0	0	0,76	0,7	1,74	1,7	96,67	96,0	0,50	0,5	1,0	1	100,6	8		9	8,5	-
5.3. Minera	alanaly	tische	Werte	; 5.	3.1 R	intge	nfluo	reszei	nz-Ana	lyse (R	FA)									
								H	auptelem	entgehalt	e [%]								-	
	T	1	-	1	-	1			T	1	1	1	-		1	T	1	-	- 1	1
Probe	02	ő	Ő	Ial	0		So	0	of	0	Q		Q	3	°°		Q	U U	tion	jou
PIODE	Si	Alz	E.	2	E		E.	W	W	ő	Z		2	Ĕ	P2	1.1	I	9 0	igni	uns
RA 5/2 mCn	0.12	<0.12	2 <0	.05	<0.10	n	b.	<0.01	0.63	55.60) <0.2	0 <	0.05	<0.05	<0.02	0.0	6	43.48	-	56.45
					31.04			2121	0100	00,00	1012		178	-1-0		1.10				
-	1.0	1	-		1.2		-	Spu	reneleme	entgehalte	e [ppm]		-	1	1			1	1	-1
Probe RA 5/2 mCm	Ba	Ce	Co	Cr	Cu	G	a La	a N	b Nd	Ni	Pb	Rb	SO3	Sr	Th	U	V	Y	Z	n Z
>20cm	<50	<50	<10	<15	<10	<	5 <1	5 <	5 <10	<10	<10	<15	<0,10	154	<10	<5	<5	6	<1	0 <

Reiteralpe Profil 6: RA_P6, Catena 3 (Alpasteig, Dolinenfeld)

6.1 Profilbeschr	eibung				
Bodentyp:		Podsolige äoli:	sche Braunerde	e, leicht pseudo	overgleyt
Klasse:		Braunerde			
Höhe / Neigung /	Exposition	1650m / 0° / - /	Blaugras-Horsts	seggenrasen	
Lage und Relief:		R / H ; Dolinenfe	eld, z.T. wasser	gefüllte Hohlforn	nen
Vegetationsgese	llschaft /	Blaugras-und R	ostseggenflur (S	Seslerietalia vari	ae)
Bodenvegetation	:				
Profilmächtigkeit		50cm			
Horizontfolge:		Aeh / Sw-Bsv /	Sd-Btv / mCv		
0 - 7cm	Aeh	durchwurzelt, se glimmerführend graubraun 10 Y	ehr stark humos ; leicht gebleicht R 6/3	; locker, krümelig t, z.T. Roststiche	g, skelettfrei, karbonatarm, sehr stark e in den Aggregaten; sandig-lehmiger Schluff;
7-40cm	Sw-Bsv	durchwurzelt, st karbonatarm, se 7/6	ark humos, Hun ehr stark glimme	nos in Schlieren rführend, rostfle	verzogen; locker, krümelig, skelettfrei, ckig, Tonbeläge; mittel toniger Lehm; gelb 10 YR
40-50cm	Sd-Btv	schwach durchw karbonathaltig, s schluffiger Ton;	vurzelt, mittel hu stark glimmerfüh hellfahlbraun 10	umos; mäßig dic nrend; leicht mar) YR 7/4	ht, subpolyedrisch bis polyedrisch, skelettfrei, moriert, Manganpunkte, Roststiche; stark
>50cm	IImCv	weißer Kalk mit YR 8/1	t Kalzit verheilte	n Haarrissen un	d braunen Tonüberzügen, angewittert; weiß 7,5
6.1.1 Probenent	nahme:	1. State 1.			
Probe	Horizont	Entnahmetiefe	Probennummer		
RA 6/1 30.09.01	Aeh	0-7cm	RA 6/1 (Aeh 0-7	'cm)	
RA 6/2 30.09.01	Sw-Bsv	7-40cm	RA 6/2 (Sw-Bsv) 7-40cm)	
RA 6/3 30.09.01	Sd-Btv	40-50cm	RA 6/3 (Sd-Bv)	40-50cm)	
RA 6/4 30.09.01	mCv	>50cm	RA 6/4 (mCv >5	i0cm)	
6.1.2 Bodenfarb	ansprache	nach MUNSELL So	il Color Chart	2000)	
Probe Nr. Horizor	nt [cm]	trocken		naß	
RA 6/1 Aeh	0-7	10 YR 6/3 pa	le brown	10 YR 4/3	brown
RA 6/2 Sw-Bsv	/ 7-40	10 YR 7/6 ye	llow	10 YR 5/6	yellowish brown
RA 6/3 Sd-Btv	40-50	10 YR 7/4 ve	ry pale brown	10 YR 5/4	yellowish brown
RA 6/4 mCv	>50	7,5 YR 8/1 wh	nite	7,5 YR 8/1	white

Reiteralpe Profil 6: RA_P6, Catena 3 (Alpasteig, Dolinenfeld) keine Schwer- und Tonmineralanalysen von RA Profil 6

6.2. Bodenanalytische Werte

6.2.1	Korng	rößen	verteilu	ing						-4-2-4	-			- 1/2		- Ball		-		_
Probe	1	mar		N N	orngrö	Seu [h	m] in	Gew	% (Fei	inbod	en bzw.	. Lösung:	sresiduu	ms LR	des a	instehe	enden (Gest	eins)	
Nr.	н	orizont	[cm] Skele >200	tt 0 200	gS)0-630	63	mS 0-200	f3 200	S -63	gU 63-20	mU 20-6,3	fU 6,3-2	T <2		S	U	J		т
RA 6/1	A	eh	0-7	0		0,6		3,5	22	,1	25,2	27,5	9,2	11,9	2	6,2	61	,9		11,9
RA 6/2	S	w-Bsv	7-40	0	-	0	-	0	2,	8	31,5	30,3	18,2	17,5		2,8	80	0,0	\mathbb{R}^{n+1}	17,5
RA 6/3	S	d-Btv	40-5	0 0		0	-	1,2	1,	6	11,6	33,2	30,4	22,0		2,8	75	,2		22,0
RA 6/4	m	Cv	>50	0		0		0	0)	0	22,1	42,5	35,4	1.1	0	64	,6		35,4
6.2.2	Boder	nphysil	kalisch	e Indice	S				-			-						_	<u></u>	
Probe				B	odenph (Ve	iysikal mältni	ische szahle	Indice: en)	S		Chara (st = st S= St	akterisier stark; sw and; U =	ung Boo = schwi Schluff;	lenart ach) m T = To	i = mit in; L =	tel) Lehm				
Nr.	Horizo	ont [cn	n] U	T T/U	U/S	U+1 /S	m	U/gU	fU	l/gU		Bod	enart		E	Bodena gruppi	urt- e		Hau grup	pt-
RA 6/1	Aeh	0-7	5,	2 0,2	2,4	2,8	TP.	1,1	(),4	sand.	-lehmige	r Schluf	f	Le	hmsch	nluff	-	U	
RA 6/2	Sw-Bs	v 7-40	4,	6 0,2	28,5	34,	7	1,0	(),6	mi tor	niger Leh	m		Le	hmsch	nluff		U	
RA 6/3	Sd-Btv	40-50	3,	4 0,3	26,8	34,7		2,9	1	2,6	st sch	nluffiger T	Ton		S	Schlufft	оп		Т	
RA 6/4	mCnLF	2 >50	1,	8 0,5	1.4	6		e –		2	st sch	nluffiger T	Ton		S	Schlufft	оп	-	Т	
6.2.3	Boder	nchemi	ische V	Verte		-	-													-
Probe	1							K	ennwe	rte de:	s Feinbo	dens /Lös	ungsresi	duums l	LR					
				pH (C	aCl ₂)	CaCO ₃	C	org	org		N	C/N	1	Dithionit	-Extrak	tion	Ox	alat-F	Extr.	Fe _o /
Nr.	н	orizont	[cm	1	-	[%]	e e	%]	Subst	anz l	[%]	-	Al	F	ed	Mn	-	Feo [%]		Fed
RA 6/1	Aeh		0-7	3.	8	1,26	5,	77	9,9)	0,51	11,3	0,11	0,	42	0,002		0,23		0,55
RA 6/2	Sw-Bs	v	7-40	4	0	1,30	2,	99	5,2	2	0,20	15,0	1,15	0,	25	0,01		0,56		2,24
RA 6/3	Sd-Btv	t.,	40-50	4	6	3,59	2,	00	3,5	;	0,11	18,2	0,69	0,	31	0,02		0,12		0,39
RA 6/4	mCnL	2	>50	8	2	96,82	0,	03	n.b	-	n.b.	n.b.	n.b.	n.	b.	n.b.		n.b.	-	n.b.
Probe								KA	Keff Im	mol/kc	1]			-	1					
Nr	Horiz	ont for	n] K	ľ	%]	Na	[%]	M	9	[%]		Ca	[%]	AI	[%]	H+	[%]	1	Σ ΚΑΚ	Basen- sättigung
RA 6/1	Aeh	0-	7 0,4	7 0	,8	2,30	3,9	3,6	60	6,1		19,95	34,0	17,44	29,7	14,88	25,4	4	58,64	44,9
RA 6/2	Sw-B	sv 7-	40 0		0	1,40	2,7	1,9	32	3,7		5,98	11,5	22,17	42,5	20,68	39,	6	52,15	17,8
RA 6/3	Sd-Bt	v 40 50)- 0		D	1,63	7,0	1,5	52	6,5		2,93	12,6	8,82	37,9	8,33	35,	8	23,24	26,2
6.3. N	linera	lanalyt	ische \	Verte (R	FA-An	alyse)													
								Ha	auptele	mentg	jehalte [%]				-				
Pro	obe	SiO ₂	Al2O3	Fe ₂ O ₃ Total	FeO		Fe ₂ O ₃	MnO	0.11	oßw	CaO	Na ₂ O	K2O	TIO ⁵		52	H ₂ O	Loss on	ignition	sum of conc.
RA 6/4 >50cm	4 mCn	0,15	0,12	<0,05	<0,1) г	ı.b.	<0,01	0,	59	55,40	<0,20	<0,05	<0,05	<0,	02 0),06	43,	21	55,22
Drohn	-	Ralo	0 0	1.0-	Cul	Gel	1e	Spu	reneler	mentg	ehalte (p	pm]	50	C-	Th	TIC	IN	V	7.	7.
RA 6/4	4			G	Cu	Ga	La	DIND	ING	INI	PD	RO	501	Sr	In	U	V	t	20	21
mCn >50cπ	n *	<50 <5	50 <10) <15	<10	<5	<15	<5	<10	<10) <10	<15	<0,10	161	<10	<5	<5	5	<10	<10
Probe	b'	Isi	iO ₂ /	FeO/	CaO/	1 Ca	0/	Na2O/	eoche	(20/	le Indice	s O+Na2O+	K20/Al20	3 SiC	2+ Ab	03	CaO+	T	Sr/Ba	
RA 6/4	4 mCv	A	1203	Fe ₂ O ₃	MgO	K ₂	0	Al ₂ O ₃	i	Va ₂ O				+Fe	203	-	MgO	+	Second St.	
>50cm	0		10		54,0		- L	1.15		10				_	17		50,0			~

Reiteralpe Profil 7: RA_P7, Catena 3 (Alpaalm-Plateaurand West)

7.1 Profilbesch	reibung												
Bodentyp:			Mit	telgrü	ndige T	erra fusca	aus Ha	ngschu	tt aus D	achst	einkall	k (brek	ziiert)
Klasse:			Ter	rae ca	lcis			-					
Höhe / Neigung	/ Expos	ition	140	0m/2	25°/E								
Lage und Relief			R/	H : Ha	naschu	tt über Schi	ichtrippe	. Mittelh	ang				
Venetationsness	lischaft	1	sub	monta	ner Ber	omischwale	d mit Tai	ne Buc	the Fich	nte			
Bodenvegetation	1:		Jun	morne		ginioonnan	a mit i di	nie, bue	110, 110				
Profilmächtickeit			500	m		_							
Horizontfolge:			Ah	/T/T	CV/ICV								
Tionzontioige.	1.45			durch	007107	for the state of the state	Acres 142	and the last	and the set		ale alea		to de a sette altérai
0 - 2cm	An		gut	luffige	wurzeit, r Lehm;	dunkelgrau	ubraun	melig bis 5 YR 3/1	s subpo	iyearis	cn, ske	iettarm,	, karbonathaltig;
2-30cm	т		dur wei YR	chwurz ße Kol 6/8	zelt, sch nkretion	wach humo en in rote,	os; dicht grüne To	, polyedi onfetzen	risch, sk eingela	elettar igert; s	m, karl chwacl	bonatha h schluf	ltig; Kalkkörner und figer Ton; rotbraun 5
30-50cm	TCv	- 1	sch Kall YR	wach kskele 6/6	durchwu tt polyed	urzelt, schw drisch; TCv	ach hun zieht za	nos; Feir pfenförr	nerde (n nig in de	nit weil en ICv-	B-rot-ge Horizo	elben To nt, karb	onfetzen) zwischen onatreich; rotbraun 5
>50cm	ICv		Har	ngschu	tt aus K	alk, z.T. br	ekziiert.	belegt n	nit Resid	dualtor	ntapete	n; 10YF	R 8/1
7.1.1 Probenen	tnahme	:		0									
Probe	Horizo	nt	Entnah	metief	e	Probennum	ner						
RA 7/1 30.09.01	Ah		0-2cm	2-11		RA 7/1 (Ah ()-2cm)						
RA 7/2 30.09.01	T		2-30cm	n		RA 7/2 (T 2-	30cm)		_				
RA 7/3 30.09.01	TCv	_	30-500	m		RA 7/3 (TCv	30-50cm	n)					
RA 7/4 30.09.01	7/4 30.09.01 mCn 2 Bodenfarbansprache na					RA 7/4 (Cn 3	>50cm)	_					
7.1.2 Bodenfart	1.2 Bodenfarbansprache na				Soil C	olor Chart	(2000)						
Probe		troc	ken				naß						
Nr. Horizont	[cm]		0.011				- N/	0.0.5/4		1.1.200		_	
RA //1 An	0-2	5 Yh	3/1		very dark	grey	5 Y	R 2.5/1		black	inh and	-	
RA //2 I	2-30	5 YI	10/0		readish y	ellow	5 Y	R 3/8		yellow	ish red		
RATIA ICV	>50	10 \	(R 8/1		white	CIIOW	10	/R 8/1		white	Sincu		
7.2 Bodenanaly	tischo	Worto	11 0/1	-	WIIIC		10	IN OFT		WINC	-		
7.2 1 Korngröß	onvorto	iluna											
Prohe	CITYGILG	nung	Korno	rößen	uml in G	ew -% (Fein	boden h	w Lösu	nasresidi	ums I	R des a	nstehen	den Gesteins)
No. Dedagad	I and	Olialatt	nong	noisen j	pingine	1 10	all all	mill	igarcaidi #1	TT	i tuos a	notononi	
Nr. Honzont	[cm]	>2000	2000-	-630	630-200	200-63	63-20	20-6,3	6,3-2	<2	S	U	Т
RA 7/1 Ah	0-2	0,6	2,	1	2,4	30,2	21,4	17,3	9,0	17,6	34,7	47,7	17,6
RA 7/2 T	2-30	0	0	11 -	0,1	4,4	10,9	14,0	22,8	47,8	4,5	47,7	47,8
RA 7/3 TCv	30-50	25	0	1.7.5.	0,6	1,4	11,1	32,3	19,2	35,2	2,0	62,6	35,2
RA 7/4 ICv LR	>50	75	0		20,1	11,7	0	21,7	26,1	20,4	31,8	47,8	20,4
7.2.2 Bodenphy	sikalisc	he India	es										
Probe			Bode	enphys	sikalisch	e Indices		Charak	terisieru	ing Bo	denart		
				(verna	althiszal	nien)		(st = sta S= San	ark; sw id; U = S	= schw Schluff	/ach; m ; T = To	n = mitteron; L = l	ei) Lehm
Nr. Horizont	[cm]	U/T	T/U	U/S	U+T/S	s mU/gU	fU/gU	1 Lis	Bodena	rt	Bo	odenart- gruppe	- Haupt- gruppe
RA 7/1 Ah	0-2	2,7	0.4	1.4	1.9	0.8	0.4	sw san	diger L		tv	p. Lehm	
RA 7/2 T	2-30	10	10	10.6	212	1.3	21	sw sch	uffiger	r	1	ehmton	T
RA 7/3 TOU	30.50	1.9	0.6	31 2	18.0	20	17	mischl	ufficer T	-	0	chlufftor	T
RATA IOULD	50-50	2.2	0,0	15	21	2,3	1,1	CW/ COD	digor	hm	50	n Lohm	
IN THE TOYLE	-00	2,0	0,4	1,5	2,1	-	Lot Part	Sw Sall	uiger Le	1111	iy	h. reuu	

Reiteralpe Profil 7: RA_P7, Catena 3 (Alpaalm-Plateaurand West)

7.2.3 Bod	enchem	nische	Wert	e (keir	ne KAK	-Besti	mmung	der Bode	enprobel	n RA 7/1	Ah 0-2ci	m, RA	7/3 TCv :	30-50c	m)					
Probe								ĸ	ennwer	e des Fe	einboden	s /Lös	ungsresid	luums l	R					
Nr H	lorizont	iemi	pH (C	aCl _z)	CaC([%]	D3	Corg [%]	org. Su [9	bstanz 6]	N [%]	C/N	A	Dithionit-E [% N Fe	Extraktio 6] Ma	on Mn	Oxala F	at-Extr. Feo %]		Fea Fea	i.
RA 7/1	Ah	0-2	5.	9	10.2		8.8	15	1	0.51	17.2	n.	b. n.l	1.	n.b.	, i	b.	+	n.b.	
RA 7/2	T	2-30	6	9	7.16		1.42	2	4	0.09	15.8	n	b 0.5	3	nh	0	27	+	0.53	2
RA 7/3	TCv	30-50	7	2	16.6		1 13	4	0	0.05	22.6		b 04	2	nh	0	10		0.45	-
RA 7/4	CylR	>50	7	9	00.0		0.23	-	h	nh	o.h	n	h nl		n.b.		h	-	nh	-
Probe		200	1 10	2	50,0		0,20	0.	u.	11,0,	1.0.	1	0,	. [n.e. [νD.	-	11.0.	
1000			_					1 1	KAKeff	mmol/kg	1	-	-							
Nr. H	orizont	Icml	K	[%]	Na	[%]	Mg	[%]	Ca	[%	A	[%]	H+	[%]	ΣKA	K		Bas sättig	sen-	
RA 7/2	T	2-30	3,95	<0,1	0,44	0,2	52,13	22,6	173,19	75,	2 0,07	<0,	1 0,53	<0,1	230,3	32		99	9,7	_
.3 Miner	alanalvi	ische	Wert	e				-		-		1		1						
.3.1 RFA	-Analys	ie		7																
				_				Hau	pteleme	ntgehalt	e [%]									
Probe	SiO2	N2O3		otoal	FeO		ezO3	Ano	Ogh	CaO	la ₂ O		K₂O.	,0°	20s		H2O	no ss	unuon for mil	onc.
		-					ш.	. S.	-		2				14		-	23	D IS	0
RA 7/2 T	43,74	1 22,	84 1	0,08	0,6	7	9,31	0,04	4,07	2,9	3 ≤0	,20	3,70	1,14	0,2	t	3,71	10,6	8 8	9,19
RA 7/4 ICv	<0,10) <0,	10 <	0,05	<0,1	0	n.b.	<0,01	19,0	2 33,4	14 <0	,20	<0,05	<0,05	<0,0	5	0,06	46,5	0 5	2,75
		1	1		1		_	Spure	nelemer	ntgehalte	[ppm]		1	1	1	1	-	1	-	1
Probe	Ba	Ce	Co	Cr	CL	1 0	ia L	a Nb	Nd	Ni	Pb	Rb	SO ₃	Sr	Th	U	V	Y	Zn	Zr
2-30cm	293	137	17	133	61	3	1 7	8 23	47	112	48	226	<0,10	271	18	<5	174	44	216	199
RA 7/4 ICv	<50	<10	<15	<10) <5		5 <	15 <5	<10	<10	<10	<15	<0,10	133	<10	<5	9	<5	<10	<10
7.3.2 Geo	ocnemis	scne I	naice	S	_	-	_	Ge	ochemis	che Indi	res	-				-		-	-	_
Probe		SiO	21	FeO/	C	aOi	CaO	/ Naz	0/	K20/	CaO	+Na ₂ (0+K20/Ala	O3 S	iO2 + Alz	03	CaO	+	Sr/Ba	
RA 7/2 T 2-	30cm	Al20	.92	Fe2O3	7	gU 0.72	0.7	Al₂C 9 ≤0	0.009	Na₂O ≤18.5	-	5	0.30	+	76.6	6	7.0	00	0.9	12
RA 7/4 ICv	<50cm					1,76			-	•			•		-		52,	46	2,6	6
7.3.3 Sch	wermin	nerale									-1.4	100	41.0			_	_			
Probe		G	7	T	R	G	esamtsp	St	Di	And	Hbl	,1-0,2	5mm Ep+Zo		Sonstide	2)		Korns	summe	-
RA 7/2 T 2-	30cm	23	3	4	2		2	9	2	0	31	1	24	-	0		_	1	62	
Probe	- 1	2		Ť	Res	Ap	rum ohi	ne Grana St	t (bezog Di	en auf 1 And	00%); Fra Hbl	aktion	0,1-0,25r Ep+Zo	nm So	nstige	_	ĸ	ornsu	mme	
RA 7/2 T 2-	30cm	4	1	5	2	2	. D	12	2	0	41	D1	31		0			12	5	
G = Granat	Z = Zirko Zoisit + Kli	n (+ Xei nozoisit	+ feink	Monaz örnige	Aggreg	jate vo	alin; R = on Pump	= Rutil; Ap pellyit)	o = Apat	t; St = S	taurolith;	DI=I	Jistnen, A	na = A	ndalusit;	HDI =	Hornble	enae;	Ep+20 =	
- mäßig	ge SM-Me	nge, bla	ß-gelbi	ich, nu	r wenig	e Kör	Besi ner >0,1	chreibung mm; keir) des Sci ne magn	hwermin etischen	eralspekt Minerale	trums		_					_	
- opaki	eich; kein	Karbon	at A	nale	n /DI	141	Tan	inoral	////	anda D	ACT 4	000	1002)	_						_
1.3.4 101	ngenan	Rela	ive Tor	minera	lgehall	e in de	er Frakt	ion <0,00	2mm	ioue R	AJIT	390 ,	(993)	Кол	mentar	-				-
Probe		M	(1 unit	101i	[Re † 2)	1%] Ka	anlinit 3)	C	hlorit	Ges	amtmen	De .	Kri	stallisa	tion		0	ellfäh	iakeit	-
RA 7/2 T 2-	30cm	2	0	4	5	The second	27	0	8	000	hoch	90	M	mäßig			V	orhan	den	_
1) MLan 2) Illite (3) Kaolii	= Mixed-la 10 Å-Mine	ayer-Ma aral, teily	terial, d veise ra	.h. unre andlich 7 Å-Mir	egelmä aufwei neral)	ßige V tbar)	Vechsel	lagerung	sminera	le aus III	t und Sm	nektit,	reich an l	lit (>60	Rel%	lllite)				

Reiteralpe Profil 8: RA_P8, Catena 1 (Wartstein-Schrecksattel)

8.1 Profilbe	schre	eibun	g			-								
Bodentyp:				Br	auner	de-Rend	Izina aus r	rotgeäd	ertem Da	achstei	nkalk,	autocl	nthon	
Klasse:				Te	rrae c	alcis								
Höhe / Neig	jung /	Expos	sition	16	10m /	18°/ES	E, subalpir	ne Stufe	1					
Lage und R	elief:		-	R	(H;H	angfuß, I	Karrenfüllu	ng im S	chichtrip	penkars	st			
Vegetations Bodenvege	gesel tation:	lschaf	t/	au Al	fgeloc penros	kerter Lä en-Gebü	rchen-Zirb Isch	enwald	(Vaccinic	-Pinetu	m cen	ibrae) r	nit Schn	ee heide-
Profilmächti	gkeit:			17	cm									
Horizontfolg	je:			Ah	/Bv/	mCn								
0 - 3cm	1	Ah		int gli	ensiv o mmerf	durchwur ührend; i	zelt, extrem nittel schlu	m humo Iffiger To	s; krümel on; dunke	lig, skel elgrau 7	ettfrei, ,5 YR	schwar 4/1	ch karbo	onathaltig, deutlich
3 - 17cr	n	Bv		du W sa	rchwu urzelba ndiger	rzelt, seh ahnen; ki U ; hellb	r stark hur rümelig, sk raun 10 Y	nos, z.T elett- ur R 6/4	. eingewa id schwa	aschen ch karb	er Hum onatha	nus in S altig, de	chlieren utlich gli	oder entlang mmerführend;
ab 17cm	n	mCn	1	ko	mpakt	er, rotge	äderter Da	chsteink	alk, nur l	eicht ar	ngewitt	ert, ver	einzelt T	ontapeten
8.1.1 Probe	nentr	nahme	e:											
Probe		Horizo	ont.	Entna	hmetie	fe	Probennum	mer						
RA 8/1 12.10	.01	Ah		0-3cm	1		RA 8/1 (Oh	0-3cm)				_		
RA 8/2 12.10	.01	Bv	_	3-170	m		RA 8/2 (Bv	3-17cm)					_	
RA 8/3 12.10	.01	Cn		>1/0	NOCI	0.00	RA 8/3 (Ch	>1/cm)			_			
Broho	ntarpa	anspra	acne n	ach wu	NSEL	L 2011 C	olor Chart	(2000)	0					
Nr. Ho	rizont	ſcm	1	IULKEII				IId	15					
RA 8/1	Ah	0-3	1	7,5 YR 4/	1	dark gre	у	7,5	5 YR 3/1	very	dark gre	ey		
RA 8/2	Bv	3-17		10 YR 6/4	-	light yell	owish brown	n 10	YR 3/6	dark	yellowis	sh brown	ı	
RA 8/3	mCn	>17	1	7,5 YR 8/	2	pinkish v	vhite	7,5	5 YR 8/2	pinkis	sh white)	1.00	
8.2 Bodena	inalyt	ische	Werte											
8.2.1 Korng	roße	nverte	eilung	10	10		AL 15 1	1 1 1					1.0.5	14-14-14
Probe				Korne	großen	[µm] in G	ew% (Feir	hboden b	zw. Losur	Igsresidi	uums L	R des a	nstehend	en Gesteins)
Nr. Horizo	ont	[cm]	Skelet >2000	t g 2000	S -630	mS 630-200	fS 200-63	gU 63-20	mU 20-6,3	fU 6,3-2	T <2	S	U	т
RA 8/1 A	h C	-3	1,8	0	0	1,8	32,8	29,3	20,0	8,8	7,3	34,6	58,1	7,3
RA 8/2 B	v 3	1-17	0	(1,0	5,8	18,1	34	14	27,1	6,8	66,1	27,1
RA 8/3 mCr	LR >	17	0	0,	0	0,0	0,0	0,0	26,1	40,2	33,7	0,0	66,3	33,7
.2.2 Bode	phys	ikalis	che In	dices										
Probe	1			Bo	denphy (Verh	vsikalische nältniszahl	e Indices en)		Charakte (st = stat S= Sand	erisierun rk; sw = l; U = Sc	g Bode schwac :hluff; T	nart :h; mi = = Ton;	mittel) L = Lehm	
Nr. Horiz	ont	[cm]	U/T	T/U	U/S	U+T/S	mU/gU	fU/gU	1	Bodena	rt.	B	odenart- gruppe	Haupt- gruppe
RA 8/1 A	'n	0-3	1,8	0,6	5,2	8,2	0,1	<0,01	sandiger	U		Sand	schluff	U
RA 8/2 B	٧	3-17	2,8	0,3	6,1	8,2	1,9	0,8	st schluf	figer T		Schlu	uffton	Т
RA 8/3 mC	'n	>17	2.0	0.5	1.4	-	-	-	et echluf	finer T		Soble	iffton	T
	-				-	-	-		let comu		-	point	anten.	-l

Reiteralpe Profil 8: RA_P8, Catena 1 (Wartstein- Schrecksattel)

8.2.3 Bode	nchem	nische	Wert	е					1000												
Probe									Kennwe	rle	des Fei	nboden	s /Lös	ungsresid	uums L	R					
			pH (C	aCl ₂)	CaCC [%])3	Corg [%]	org. 5	iubstanz [%]	ĥ	N [%]	C/N	I	Dithionit-E	xtraktio	n	Oxala F	at-Extr.		Fed Fed	
Nr. Ho	rizont	[cm]	1.1	- 1						Ι.	1.11		A	Fe	Ha I	Mn	l	%]			
RA 8/1	Ah	0-3	6,	3	3,1		17,2	1	9,6	1	1,35	12,9	n.t	. 1.7	'1 r	n.b.	0	,51		0,30	
RA 8/2	Bv	3-17	6,	4	3,3		6,80	1	1,7	(0,56	12,1	0,3	8 1,3	6 0	0,04	0	,56	-	0,41	
RA 8/3 m	Cn	>17	7,	9	96,2		0,03	1.1	n.b.	1	n.b.	n.b.	n.t). n.t). r	n.b.	n	.b.		n.b.	
Probe	0.1					-		-	KAKef	fIm	imol/kol	-		-	-	-			-		
			1.00			1.5	Los	Tan!			1000	T.u.	L.	Lo	[]	Ellay	100		Bas	en-	
Nr. Ho	rizont	[cm]	ĸ	[%]	Na	[%]	Mg	[%]	Ca	1	[%]	AI	[%]	H+	[%]	ΣΚΑ	К	4	sättigu	ng [%]	
RA 8/2	Bv	3-17	0,0	0	1,28	0,8	2,38	1,5	156,0	7	97,2	0,16	1,5	0,56	0,3	160,5	4		99	5	
8.3 Mineral 8.3.1 Rönto	analyt	ische	Werte	e nalvsi	e (RF	A)															
	10000					-		Ha	auptelem	ent	gehalte	[%]									
Probe	SiO2	Al ₂ O ₃	EarD	Totoal	FeO	4	16203	Con	OBM		CaO	NazO		Keo	Tio2	P205		H ₂ O	Loss on ionition	sum of	CONC.
RA 8/2 Bv 3-17cm	48,94	16,	69	7,03	4,29		2,74	0,11	1,6	9	2,10	0,9	93	1,82	1,02	0,26		3,96	19,19	8	0,91
RA 8/3 mCn >17cm	<0,10	<0,	10 <	0,05	<0,10	o	n.b.	<0,0	1 0,3	2	55,56	S <0,	20	<0,05	<0,05	<0,0	5 (0,08	43,52	5	6,11
Probe	Ba	Ce	Co	Cr	1 Cu	IG	all	alN	b Nd	anig	Ni I	Ph	Rh	SO2	Sr	Th	1 11	T V	TY	7n	71
RA 8/2 Bv 3-17cm	305	119	22	185	<10	1	5 5	0 2	0 57		64	42	90	0,13	129	19	8	116	65	163	339
RA 8/3 mCn >17cm	<50	<10	<15	<10	<5	<	5 <1	15 <	5 <10	D	<10	<10	<15	<0,10	106	<10	<5	9	<5	11	<10
8.3.2 Geod	hemis	che li	ndices	5	_		_		Control	look	he India	00		_	_				_		
Probe		Sic	2/	FeO/	Ca	0/	CaO/	Na	20/	K ₂	20/	CaO	Na ₂ O	+K20/Al2		D2 + Al2C)3	CaO	+ 5	Sr/Ba	
DA 0/2 DV 2	700	Alz	D3	Fe ₂ O ₃	Mg	0	K20	Alz	03	Na	a20		0	20	+F	e2O3		MgO	0	0.4	2
RA 8/3 mCn >	17cm		-	1,00		134			-	1	-		0,	20		-	-	55,8	38	<2,1	12
8.3.3 Schw	ermin	erale	(Meth	ode F	RAST	1990), 199	3)												-	
Decks		0	7	Ŧ		Ge	samtsp	ektrum	(Kornza	hl- '	%): Fra	aktion 0	1-0,25	5mm		0		_	K	101cz X	
RA 8/2 BV 3-1	7cm	13	5	3	2	A	p 2	0	0		And 0	HDI 13		Ep+20 62		Sonstige ()	•		Kornsi 23	umme 14	
Dasha		-		-	Res	spekt	um ohr	e Gran	iat (bezo	gen	1 auf 10	0%); Fra	aktion	0,1-0,25	m			L.			-
RA 8/2 BV 3-1	7cm	6		3	2	Ар 2		0	0	1	0	15		72	500	0		N	203	nme	
G = Granat; Z Epidote (+ Zo	= Zirkoi sit + Klii	n (+ Xer nozoisit	notim + + feink	Monazi örnige /	it), T = Aggreg	Turma ate vo	alin; R = n Pump	Rutil; ellyit)	Ap = Apa	itit;	St = Sta	aurolith;	Di = D)isthen, A	nd = An	ndalusit;	Hbl =	Hornble	ende; E	p+Zo =	
- geringe	SM-Me	nge, oc	kerfarbe	en, sehr	fein, n	ur we	Besc nige Kö	ner >0	ng des Si 1,1mm;	chw	vermine	ralspekt	rums				-		_		-
 sehr de mäßige Verwitte 	utlicher r Opaka erungsgr	Gehalt i nteil; ke ad nich	nagneti in Karb t bestim	ischer M onat Imbar	Aineral	e															
8.3.4 Rönt	gendif	frakti	on-An	alyse	(RD/	A) - T	onmi	neral	e (Meth	100	de RA	ST 19	90, 1	993)						-	10
Draha		Rela	alive To	nminer	algeha	lle in c	ler Frak	tion <0	,002mm	[Re	el%				Related	Komme	nlar	-		tales in	
RA 8/2 BV 3-1	7cm	3	ML	7	41	Na	8	U	10/11 2	Nº A	+ <u>Cn</u> 49	Ges	ch	enge	mäßi	a		Q	vorhan	den	
 4) MLm = 5) Illite (10 6) Kaolinit 7) Smektit 	Mixed-la Å-Mine (7 Å-Min	yer-Ma ral, teilv neral); (terial, d veise ra Chlorit (h. unre ndlich a 7 Å-Min	gelmäl aufweit ieral)	Sige V bar)	/echsel	lagerur	igsminer	ale	aus Illit	und Sm	ektit, i	reich an I	lit (>60	Rel% I	llite)				
		Re	ative H	äufigke	it sons	tiger I	Ainerale	3					_								
RA 8/2 BV 3-1	7cm	Ha	uptkom	ponente	9		Neben	kompo	nente		1	venig				Spuren					
Oz = Quarz: k	F = Kal	feldspä	te: Alb :	= Albit	Cc = C	alzit: [Nr > P	olomit	-	-		50	-		_	_		_		_	

Reiteralpe Profil 9: RA_P9, Catena 2 (Karstplateau, Neue Traunsteiner Hütte) 9.1 Profilbeschreibung

				100.000										
Boden	typ:			Podso	lüber	Residua	allehm aus	Gosau	ıkalk				_	
Klasse				Podso										
Höhe / I	Neigung /	Expositio	n	1560m/	0-5°/S	;								
Lage un	nd Relief:			R/H;E	olinen	reiche Se	nke in Gosa	uschicht	en	_				
Vegetat Bodenv	tionsgesel regetation:	lschaft /		aufgeloo	ckertes	Alpenros	en-Latscher	-Gebüse	ch (Erico-F	Rhodode	ndretur	n hirsuti) mit We	iderasen
Profilma	ächtigkeit:			41cm										
Horizon	tfolge:		- 1.1	Ahe /Bi	ns / Bsh	1/IIBv-Te	c/mCv						_	
0.	- 7cm	Ahe		intensiv	durchy	urzelt se	hr stark hur	nos lock	er krüme	lia skele	ttfrei s	chwach	karbona	thaltig deutlich
	(on)	1 410	2.21	alimmer	führend	d. aebleic	ht. scharfe C	Grenze z	u Bhs: sch	luffiger l	ehm: h	ellbrau	narau 10	YR 6/3
7 -	10cm	Bhs		durchwu	irzelt, s führend	ehr stark d; schluffi	humos, Hur ger Lehm; g	nus in So elb 10YF	chlieren; k R 7/6	rümelig,	skelett	frei, karl	onatarn	n, roststichig, stark
10-	-25cm	Bsh		durchwu	irzelt, h	numos, k	rümelig, ske	lettfrei, k	arbonatan	m; stark	toniger	Schluff;	gelbbra	un 10 YR 6/6
25-	-30cm	IIBv-T	c	schwack	n durch	wurzelt, r	nittel humos	; subpoly	vedrisch, s	skelettfre	i, tasch	enförmi	g in Klüf	ten in den mCv
-				ziehend	, sek. K	alkausfä	lung in Nest	ern, z.T.	pseudom	ycelartig	; schluf	figer Le	hm; rotb	raun 7,5 YR 6/6
30-	-41cm	mCv	1.1	zerklüfte Zäpfche	eter Kre n auf d	idekalk ir er Kalkol	h Karrensteir berfläche; ros	ne zerfall sa 7,5 YI	len und mi R 8/3	it Tontap	eten be	elegt; se	k. Kalka	usfällungen in Form von
9.1.1 P	robenen	tnahme	£:											
Probe	1.1.1.1.1	Horizo	ont	Entna	hmetie	fe	Probennum	mer						
RA 9/1	12.10.01	Ahe		0-7cm	1		RA 9/1 (Ahe	e 0-3cm)	1					
RA 9/2	12.10.01	Bhs		7-100	m		RA 9/2 (Bhs	7-10cm	1)					
RA 9/3	12.10.01	Bsh		10-25	icm		RA 9/3 (Bsh	10-25ci	m)					
RA 9/4	12.10.01	IIBv-T	C	25-30	cm		RA 9/4 (IIB)	-Tc 25-3	30cm)			-		
RA 9/5	12.10.01	mCv		30-41	cm		RA 9/5 (mC	v 30-41c	cm)				_	
9.1.2 B	lodenfar	banspra	iche n	ach MU	NSEL	L Soil C	olor Chart	(2000)	_					
Probe Nr.	Horizo	nt [cr	n]	trocken						naß				
RA 9/1	Ahe		0-7	10 YR 6	/3	pal	e brown			10 YR	3 /4	dark y	ellowish	brown
RA 9/2	Bhs	7	-10	10 YR 7	/6	yel	low			10 YR	5/8	yellow	ish brow	m
RA 9/3	Bsh	1	0-25	10 YR 6	/6	bro	wnish yellow	V		10 YR	4/6	dark y	ellowish	brown
RA 9/4	IIBv-T	c 2	5-30	7,5 YR 6	6/6	red	dish yellow			7,5 YR	5/6	strong	brown	
RA 9/5	mCv	3	0-41	7,5 YR 8	3/3	pin	k			7,5 YR	8/4	pink		
9.2. Boo	denanaly	tische '	Werte											
Probe	, and the second		lang	-	Korngri	ößen [um]	in Gew% (F	einboden	bzw. Lösur	nasresidu	ums LR	des anst	ehenden	Gesteins)
Nr.	Horizont	[cm]	Skelet	tt g	S 0-630	mS 630-200	fS 200-63	gU 63-20	mU 20-6.3	fU 6.3-2	T s2	S	U	т
RA 9/1	Ahe	0-7	0	2000	0	04	245	20.4	10.0	24	10.2	20.0	107	10.0
RA 0/2	Bhe	7-10	0	1	19	2,4	34,5	20,4	18,9	3,4	10,3	30,0	42,1	18,3
RA 0/2	Beb	10.25	0	0	,7	0,8	16,7	17,1	27,8	12,6	24,4	18,2	57,5	24,4
NA 3/3	000	10-20	0	0	,2	0,0	7,2	18,5	28,4	19,5	26,2	7,2	66,4	26,2
RA 9/4	IIBV-IC	25-30	0		0	0	0	10,4	30,4	31,6	27,4	0,0	72,4	27,4
RA 9/5	mCv	30-41	Fels	1	0	0	0	14	19,8	30,7	35,4	0,0	64,5	35,4
9.2.2 Bo	odenphy	sikalisc	he Inc	lices		-								
Probe				B	odenphy (Verh	sikalische nältniszahl	Indices en)		Charakter (st = stark S= Sand;	risterung E c; sw = sc U = Schlu	Bodenar hwach; r uff; T = T	t ni = mitte fon; L = l	al) Jehm	
Nr.	Horizont	[cm]	U/T	T/U	U/S	U+T/S	mU/gU	fU/gU	10.20	Bodenar		В	odenart- gruppe	Haupt- gruppe
RA 9/1	Ahe	0-7	2.3	0.4	1.1	1.6	0.9	0.2	schluffige	rL.		T	onschluff	U
RA 9/2	Bhs	7-10	2.4	0.4	3.2	4.5	1.6	0.7	schluffige	rL		T	onschluff	Ŭ
RA 9/3	Bsh	10-25	2.5	0.4	9.2	12.9	1.5	1.1	st toniger	U		T	onschluff	U
RA 9/4	IIBv-Tc	25-30	2.6	0.4			29	30	st schluffi	oer T		S	chluffton	Т
RA 9/5	mCv	30-41	1.0	0.5	1		4.4	0,0	minahluff	inor T	_	0	oblufflor	+
			1,8	0,5	1.4		1,4	2,2	mi schluff	iger i		S	chlutton	I.

Reiteralpe Profil 9: RA_P9, Catena 2 (Karstplateau, Neue Traunsteiner Hütte)

Draha	nune	mache	vverte			-	_		Kennwe	rte de	s Fein	boden	s /Lő	sungs	residuu	ms LF	2	-		-	-	
PIODE			pH (Ca	iCl ₂)	CaCO ₃ [%]	T	Corg [%]	org. S	ubstanz [%]	N [%]	1	C/N	L	Dithic	onit-Extr	aktior		Oxa	at-Extr. Feo	T	F	ed ed
Nr. Ho	rizont	[cm]											12	AI	Fed	N	n		[70]			
RA 9/1	Ahe	0-7	3,9		2,0		9,05	1	5,6	0,8	9	10,2	11	.45	0.89	1	0.01	(0,69		0	,77
RA 9/2	Bhs	7-10	4.0)	1,9	1 2	5,60	1	9,6	0,3	2	17,5	18	.76	1.49	1	0.02	(0,96	1.115	0	,64
RA 9/3	Bsh	10-25	4,2		1,7		6,76	1	1,6	0,14	4	48,3	13	85	0.60		0.02	(0,13		0	,22
RA 9/4 II	Bv-Tc	25-30	6,7	-	3,1		1,84	3	3,2	0,10	6	11,5	0	15	1.03		0.03	(0,12	1	0	12
RA 9/5	mCv	30-41	8,2		94,6		0,08					i.		h	nh	0	b.	11	n.b.	1	n	.b.
robe								-	KAKef	f [mmc	ol/kg]		1 0	,D, 1	11.0.	1				d.		
Nr. Ho	orizont	[cm]	ĸ	[%]	Na	[%]	Mg	[%]	Ca	a	[%]	10	AI	[%]	H+	[%	ΙΣ	KAK		Ba sättig	isen-	%]
RA 9/1	Ahe	0-7	10,87	15,1	1,93	2,7	3,91	5,4	33,8	33	47,2	11	,45	16,0	9,74	13,	6 7	1,72		7	0,5	
RA 9/2	Bhs	7-10	3,39	5,3	1,58	2,5	2,65	4,2	19,	79	31,2	18	3,76	29,6	17,24	27,	2 6	3,42		4	3,2	
RA 9/3	Bsh	10-25	0	0	1,52	3,1	1,51	3,1	18,4	44	38,1	13	3,85	28,6	13,08	27,	0 4	8,41		4	4.4	
RA 9/4 II	Bv-Tc	25-30	3,36	2,3	1,55	1,0	2,28	1,6	138,	27	94,6	0	,15	0,1	0,54	0,4	1	46,14		9	9,5	
.3 Mineral	lanal	tische	Werte	: 9.3	1 Rör	tae	nfluor	eszel	nz-Ana	alvse	(RF	A)	-	-		-	1-		1			
				,				Hau	ptelem	entge	halte	[%]				-						
Probe		SiO ₂	Al ₂ O ₃	Fe203	Total	FeO	(Fe2O3	MnO	OgM		CaO	Na ₂ O		K₀0		TiO2	1205	0	no sso.	gnition	sum of conc.
RA 9/1 Ahe 0-5cm		49,10	13,42		6,0	0,	78	5,22	0.15	1,9	98	0,99	0,4	42	2,13	0.0	5	0,11	2.35	16,	40	83,61
RA 9/4 IIBv-T	Ċ	55,92	19,34		7,72	0,0	67	6,95	0,15	2,2	25	1,12	0,	45	3,41	0,9	8	0,16	2,62	8,1	5	91,75
RA 9/5 mCv 30-41cm	1	1,10	0,64	1.0	0,26	<0	10	n.b.	<0,01	0,5	54 1	53,78	<0	20	0,07	<0,0	5	0,02	0,15	43,	02	56,56
				-		_		Spu	renelem	enlgeh	nalle [p	[mqq	-									
Probe	Ba	Ce	Co	Cr	Cu	Ga			b Nd	N		24	Rb	S	15	Sr 124	Th	U	V	Y 20	Zr	Zr 7 271
RA 9/4 IIBv-	070	170		103	10	10			0 33			34	100	0	,10	124	14	5	110	100	10	0 005
Tc; 25-30cm RA 9/5 mCv	3/5	170	21	1/9	20	23	90	5 4	2 00	10		30	103	4	,10	120	10	50	101	100	120	0 200
30-41cm	500	400	\$10	<2	<15	50		0	0 <10		IQ S	-IQ	<15	S	, 10	100	50	<0	0	\$10	Sh	1 10
9.3.2 Geo	chem	ische I	ndices	0	10-01		0.01	IN-C		KOL	NI- O	10	2-01	NI- 0	KOU	0:0		-	10-01	- 14	0-/0-	
Probe		Al ₂ O	B Fe	90/ 9203	MgO		K20	Al ₂ O	3	N20/	Na ₂ O	Ă	Al2O3	Na ₂ U	+N2U/	+Fe2	- Al20	J ₃	MgO		51/Da	100
RA 9/1 Ahe 0-5cm					1 m					l,												
RA 9/4 IIBv-7 25-30cm	c	2,	39	0,09	0,50		0,33	0	,02	7	7,85			0,26			82,98	3	3,3	7		0,34
RA 9/5 mCv 30-41cm		t	72	•	99,5	6	190		4		÷.			(4)		Ť.	2,00		54,3	32	- 0	0,38
9.3.3 Schv	verm	inerale	(Meth	ode F	RAST	1990	, 1993	3)	Worazo	bl 0/1	- Era	klion (110	25 mir			_	_	_	_	_	_
Probe		G	Z	T	R	A	D	St	Di	A	, ria	Hb	J. 1-0,	E	0+Zo	-	Sonsti	ge		Korns	summ	10
RA 9/1 Ahe		2	1	1	1	1		1	0		0	38	3		56		0			3	15	
RA 9/4 IIBv-1 30cm	c 25-	13	6	1	0	6	i	2	0	11	0	13	3		59		Q			1	76	
					Rests	pektr	um ohn	e Gran	nat (bezo	igen a	uf 100	%); Fr	raktio	n 0,1-	0,25mm	h						
Probe	0.25		Z	Ţ	R	A	p	St	Di	A	nd	Hb	1	Ept	Zo	Sor	stige			Kornsu	Imme	ſ
30cm	C 20-	1. 1. 17	7	1	0	7	Ees D	3	0	10.00	0	14		6	8	- 411	0	1161	Hereit	15	3	10 m
G = Granat; A Epidote (+ Zo	z = Zirl	(linozoisit	+ feinkö	vionazi irnige /	f_{ggrega}	te voi	nn; R =	ellyit)	Ab = Abs	int; St	= Stat	Irolith	: DI =	Uisth	en, And	= And	alusi	; HDI =	Hornb	ende;	cp+2	0=
		S					Besc	hreibur	ng des S	chwer	miner	alspek	drums	6		_			-			
 geringe Granat 	angel	ienge, ge ost und z.	T, mit br	aun, nu aunen	ur ganz v Überzüg	yenig gen v	e Korne erseher	er >0,1 n, Opak	mm «körner h	näufig	mit za	ckiger	n Rän	dern								
sehr op	bakreid	h; vereinz	elt Karb	onatkö	mer und	i sph	ärische	Kiesela	algen													

- mäßiger Gehalt an magnetischen Mineralen

Reiteralpe Profil 9: RA_P9, Catena 2 (Karstplateau, Neue Traunsteiner Hütte)

	Relativ	ve Tonn <0	nineralg 0,002mn	ehalte in n [Rel9	n der Fraktion %]		Kommentar	
Probe	MLillit ¹⁾	Illit ²⁾	Kt 3)	Ct 3)	ΣKt+Ct	Gesamtmenge	Kristallisation	Quellfähigkeit
RA 9/1 Ahe	4	63	6	27	33			
RA 9/4 IIBv-Tc 25-30	13	41	32	14	46	mäßig	mäßig	kaum
1) MLillit = Mixed-lay	er-Materia	l, d.h. u	nregelm	iäßige V	Vechsellagerungs	sminerale aus Illit und	Smektit, reich an Illit (>	60 Rel% Illite)
2) Illite (10 Å-Minera	al, teilweise	e randlid	ch aufwe	eitbar)				
3) Kaolinit (7 Å-Mine	eral): Chlor	rit (7 Å-1	(Ineral)					

Reiteralpe Profil 10: RA_P10, Catena 2 (Karstplateau, Schrecksattel)

10.1 Profilbesc	hreibung				
Bodentyp:		Aolisc	he Braunerde üb	er Residualton au	s weißem Dachsteinkalk
Klasse:		Braun	erde		
Höhe / Neigung	/ Exposition	1540m	/10-15°/ NW		
Lage und Relief		R/H;	Unterhang, Schich	tkopf, Almgebiet	
Vegetationsges Bodenvegetatio	ellschaft / n:	aufgelo Weider	ockertes Alpenrose rasen	n-Latschen-Gebüs	sch (Erico-Rhododendretum hirsuti) mit
Profilmächtigkei	t:	55cm	Contraction Contraction		
Horizontfolge:		Bhv / B	Bv / IIBv-T / mCv		
0 - 16cm	Bhv	durchw	vurzelt, sehr stark l erführend; mittel to	numos; krümelig, sl higer Sand; hellbra	kelettfrei,schwach karbonathaltig, deutlich un 10 YR 6/3
16 - 34cm	Bv	durchw homog	vurzelt, mittel humo en, glimmerführen	os; krümelig, skelet d; stark toniger Sch	tfrei, schwach karbonathaltig, Solum völlig hluff; hellbraun 10 YR 7/4
34-55cm	IIT-Sd	kaum o karbon Aggreg	lurchwurzelt, schw athaltig, zunehme atinneren; stark so	ach humos; bröcke nde Akkumulation v chluffiger Ton; very	elig bis polyedrisch, skelettfrei, schwach von rotem Ton in Nestern; z.T. roststichig im pale brown
>55cm	mCv	weißer	Kalk, rotgeädert, a	T. Tontapeten in I	Klüften; 7,5 YR 8/2
10.1.1 Probene	ntnahme:	and the second		Contract states a	
Probe	Horizont	Entnahme	tiefe Probenn	ummer	
RA 10/1 12.10.01	Ah+Bv	0-10	6cm RA 10/1	(Bv1 0-16cm)	
RA 10/2 12.10.01	Bv	16 - 3	4cm RA 10/2	(Bv2 16-34cm)	
RA 10/3 12.10.01	IIBv-T	34-5	5cm RA 10/3	(Bv3 34-55cm)	
RA 10/4 12.10.01	mCv	>55	cm RA 10/4	(Bt (T?) 25-30cm)	
10.1.2 Bodenfa	rbansprache	e nach MUNS	ELL Soil Color C	hart (2000)	
Probe Nr. Horizor	nt [cm]	trocken		naß	
RA 10/1 Ah+1	3v 0-16	10 YR 6/3	pale brown	10 YR 4 /3	brown
RA 10/2 Bv	16-34	10 YR 7/4	very pale brown	10 YR 5/6	yellowish brown
RA 10/3 IIBv-	T 34-55	10 YR 7/4	very pale brown	10 YR 5/4	yellowish brown
RA 10/4 mCv	>55	7,5 YR 8/2	pinkish white	7,5 YR 8/3	pink

Reiteralpe Profil 10: RA_P10, Catena 2 (Karstplateau, Schrecksattel) 10.2. Bodenanalytische Werte

10.2.1	Korngrä	Senve	rtei	lung																			
Probe					K	orngrö	ßen [um] i	n Gev	N% (Feint	oden ba	zw. Lö	sung	gsresidu	ums Ll	R des	ans	stehe	nden G	esteir	ns)	
Nr.	Horizont	[cm]		Skelet >2000	t 2	gS 000-63	30	m 630-	S 200	f5 200-	-63	gU 63-20	mL 20-6	J 5,3	fU 6,3-2	T <2	S		U			т	
RA 10/1	Ah+B	0-1	6	0			1,5		2,3	1 the	44,9	21,7	1	3,6	4,3	11,7	48,7	7	39,6	3	1	1,7	
RA 10/2	Bv	16-3	34	0			0,0	-	1,0		9,0	20,9	2	8,5	20,8	19,8	10,0)	70,2		1	9,8	
RA 10/3	IIBv-T	34-5	55	0			1,5		1,7		4,3	10	2	6.5	26,2	31	7,5		62,7	0		31	
RA 10/4	mCv	>5	5	Fels	1		0.0		0.0		0.0	0.0	2	7.9	40.2	31.8	0.0		68.1		3	1.8	
10.2.2	Bodenp	hysika	lisc	he In	dice	s	-1-1	-	Site				-										
Probe						Bode (nphys Verha	sikali: ältnis	sche I zahle	ndice n)	S		Char (st = S= S	akte star and	risierung k; sw = s ; U = Sc	g Bode schwac hluff; T	nart :h; mi = To	= m n; L	nittel) = Le	hm			
Nr.	Horizon	t [cm]	U/T	Ť.	/U	U/S	U+	T/S	mU	/gU	fU/gU		I	Bodenar	t		Boo	dena uppe	rt-	ł	laupt jrupp	- 8
RA 10/1	Ah+By	0-16	3	3,4	0	,3	0,8	1	,1	0,	6	0,2	mi to	nige	rS			Sar	ndleh	m		L	
RA 10/2	Bv	16-3	4	3,5	0	3	0,9	1	1	1,	4	1,0	st to	niger	U			Ton	schl	uff		U	
RA 10/3	IIBv-T	34-5	5	2.0	0	.5	8.4	12	2.5	2.	7	2.6	mi so	chluf	figer T			Sch	luffto	on		Т	
RA 10/4	mCv	>55	5	2.1	0	.5		11					st sc	hluff	iger T			Sch	lufft	on		T	
10.2.3	Bodenc	hemiso	che	Wert	e								0.00		301 1		-					-	
Probe			T		-		-		-	Келг	nwerte	des Feir	iboden	s /Lä	sungsres	iduums	LR	-			-		
Fibe			p	H (CaC	12)	CaCO3 [%]	1	Corg [%]	org.	Subsi [%]	tanz	N [%]	C/N		Dithion	t-Extrait [%]	tion		Oxa	alat-Extr. Feo		Fe Fe	ed Ea
Nr.	Horizont	[cm]	1		1				11						AI	Fed	Mn			[%]			
RA 10/1	Ah+Bv	0-16		4,4		3,2	1	7,60	1	13,1		0,84	9,0	1	0.20	1.00	0.03		-	0.43		0.4	13
RA 10/2	Bv	16-34	1	4,2	1	2,2		2,92		5,0		0,25	11,7		1 26	1 20	0.02			0.51	T	0,4	12
RA 10/3	IIBv-T	34-55	5	5,8		4,2		1,65	1	2,8		0,10	16,5		1 17	0.83	0,02			0,01	1	0,1	14
RA 10/4	mCv	>55	+	8.2	+	98,7		0,05	1	n.b.		n.b.	n.b.		n.b.	n.b.	n.b.	+	-	n.b.	+	n.t	D.
Probe			+	-	-		-		1	W/	Koff	mmol/kg		-		-		-	-		-		-
			-	- 1	-	-	-	1	T		iven [I I I I I I I I I I I I I I I I I I I	1			-	-	-		1	Ra	000	
Nr. RA 10/1	Horizont Ah+Bv	[cm] 0-16	+	K 2.93	[%] 3.9	Na 2.38	[%] 3.1	Mg	7 3	%] .7	Ca 47.35	[%	I 7 1	AI	[%]	H* 9.90	[%] 13,1	Σ	KAK	-	sättig 7	ung [% 3.5	6]
RA 10/2	By	16-34	+	1.00	1.3	2.88	3.8	1.6	0 2	1	25.29	33.	5 9	.94	13.2	9.10	12.0	49	9.81	-	6	1.8	
RA 10/3	IIBy-T	34-55	;	2.03	3.1	1.68	2.5	2.3	1 3	.5	55,26	84.	0 2	2.61	4.0	1.92	2.9	6	5.81	1	9	3.1	-
10.3 M	ineralar	alytisc	he	Werte	3	1,00		1 -10	. 1.		00120				1.14	1,04	210			-		210	
10.3.1	Röntger	fluore	sze	nz-Ar	nalys	se (Rf	FA)	-)	Haupte	elemer	ntgehalle	[%]	-		-	-	-	-	-	-	-	
	T	1	2	T	T	100	T		T				T	1.1	1	T	1		T		-	_	-
Prob	sio, ai	ALO	2021	Fe ₂ O ₃	Total	FeO	C O	16203		MnO	OBM	CaO	Oven	O'BAI	Ko		Ti02	P205		H ₂ O	Loss o	ignitior	sum o conc.
RA 10/1 Ah+Bv 0-16cm	50	0,82 1	4,98	6,3	32	1,62		4,46	0,	11	1,68	0,6	7 (),57	2,36	0,9	7	0,3	1	3,39	19	,85	79,16
RA 10/2 16-34cm	Bv 59	9,38 1	6,34	6,	75	0,93		5,69	0,	07	1,75	i 0,5	7 (0,67	2,92	1,1	2	0,1	7	2,24	9,	08	89,98
RA 10/3 I/Bv-T 34-55cn	60),17 1	7,48	7,0	05	1,35		5,52	0,*	113	2,41	0,6	3 (),64	3,57	1,0	6	0,0	8	2,03	6,	27	93,41
RA 10/4 mCv >5	5cm 0	,16 (0,14	0,0	07	<0,10		n.b.	<0	,01	0,34	55,3	15 <	0,20	<0,05	<0,	05	<0,0)2	0,04	43	,45	56,18
Droke	1.		- 1	Col	C-	Low	To	. 1	Sp	NIE	lemen	tgehalte	[ppm]	0	0	0	TŦ	h	11.1	V	v	7-	17.
10/1 Ah	+By 2		+	16	144	18	22		46	22	35	58	116	13	0 0.21	1 51) <1	0	<5	134	38	179	241
RA 10/2	By 3	81 92		14	148	14	23	3	49	23	36	53	31	15	6 <0,1	0 129) <	0	<5	144	32	107	285
RA 10/3	4	12 95		22	149	28	23	3	49	21	37	85	29	16	3 <0,1	0 125	5 1	4	<5	167	32	127	246
RA 10/4	<	50 <50	0	<10	<5	<15	<	5	<15	<5	<10	<10	<10	<1	5 <0,1	0 96	<5		<5	7	<5	11	<10

Reiteralpe Profil 10: RA_P10, Catena 2 (Karstplateau, Schrecksattel) 10.3.2 Geochemische Indices

Probe		E-01	0-01	0-01	IN- OI	LK OV	LC-DIA	- OUV OIN	0 0	ALAL O	10.01	C=/D=
	Al ₂ O ₃	Fe0/ Fe2O3	MgO	K ₂ O	Al ₂ O ₃	Na ₂ O/	CaO+M	120+A20/A	203 SIC +F	02 + A12O3 02O3	MgO	SI/Da
A 10/1 Ah+Bv -16cm	3,39	0,26	0,40	0,28	0,04	4,14		0,24		72,12	2,35	0,38
RA 10/2 Bv 6-34cm	3,63	0,14	0,33	0,20	0,04	4,36	2	0,25		82,47	2,32	0,34
A 10/3 IIBv-T	3,44	0,19	0,26	0,18	0,04	5,58	120	0,28		84,70	3,04	0,30
RA 10/4 mCv >55cm	1.14	1.4	162.8	-		-				0.37	55.69	
0.3.3 Schwermin	nerale (N	ethode	RAST 1	990, 19	93)		_				1 cates	
	100		G	esamtspe	ktrum (Ko	mzahl- %)	Fraktion C	.1-0,25mm				
robe	GZ	r r	R	Ap	St	Di /	And Hit	Ep-	+Zo	Sonstige 1)	Ko	rnsumme
A 10/1 Ah+Bv -16cm	2 2	1	0	2	2	1	0 53	3 2	9	7		242
A 10/2 Bv 6-34cm	8 2	1	2	2	3	3	0 20) 5	8	0		300
RA 10/3 IIBv-T 4-55cm	6 1	1	1	1	2	1	0 30) 5	5	4		254
			Restspel	trum ohne	e Granat (b	ezogen a	uf 100%); Fr	aktion 0,1-0,	25mm	-		
robe	Z	Т	R	Ар	St	DI A	And Ht	Ep+2	Zo S	onstige 1)	Korr	summe
A 10/1 Ah+Bv	3	1	0	3	2	1	0 54	1 30		7		235
- 10CM	-				-	-				-		
6-34cm	2	1	3	2	3	3	0 22	2 63		0		276
A 10/3 IIBv-T	1 1	1	1	1	3	1	0 31	58		4		239
T) Sonstige. NA				Besch	nreibung de	es Schwer	mineralspek	trums				
RA 10/1 Ah+Bv 0-16cm mäßige SM-Men	n: ge, blaß-ge	elblich, Fra	ktion <0,1r	Besch mm überw	irelbung de	es Schwer	mineralspek	trums				
A 10/1 Ah+Bv 0-16cm mäßige SM-Men hoher Zoisit-Ante wenig Karbonatk (A 10/2 Bv 16-34cm;	n: ge, blaß-ge ill, Hornblei örner, kein	elblich, Fra nde häufig e magnetis	ktion <0,1r stark gebl schen Körr	Besch mm überw eicht und ner	irelbung de legt stark oft fein-nac	es Schwer delig	mineralspek	trums				
A 10/1 Ah+Bv 0-16cm mäßige SM-Men hoher Zoisit-Ante wenig Karbonatk XA 10/2 Bv 16-34cm: kaum SM, sehr w	n: ge, blaß-ge ill, Hornblei örner, kein venig der F	elblich, Fra nde häufig e magnetis raktion <0,	ktion <0,1r stark gebi schen Körr 1mm,	Besch mm überw eicht und her	nreibung de legt stark oft fein-nac	es Schwer delig	mineralspek	trums				
A 10/1 Ah+Bv 0-16cm mäßige SM-Men hoher Zoisit-Ante wenig Karbonatk A 10/2 Bv 16-34cm: kaum SM, sehr w Epidot überwiegt	n: ge, blaß-ge iil, Hornblei örner, kein venig der F Zoisit-Ante	elblich, Fra nde häufig e magnetis raktion <0, eil, Granat	ktion <0,1r stark gebl schen Körr 1mm, kaum ange	Besch mm überw eicht und her elöst, Horr	nreibung de iegt stark oft fein-nac	es Schwer delig utlich ang	mineralspek elöst und oft	trums braunfleckig	1			
RA 10/1 Ah+Bv 0-16cm mäßige SM-Men hoher Zoisit-Ante wenig Karbonatk RA 10/2 Bv 16-34cm: kaum SM, sehr w Epidot überwiegt mäßiger Opakam	n: ge, blaß-ge iil, Hornblei örner, kein venig der F Zoisit-Ante teil	elblich, Fra nde häufig e magnetis raktion <0, eil, Granat	ktion <0,1r stark gebi schen Körr 1mm, kaum ang	Besch mm überw eicht und her elöst, Horr	nreibung de iegt stark oft fein-nac nblende de	es Schwer delig utlich ang	mineralspek	trums braunfleckig	1			
A 10/1 Ah+Bv 0-16cm mäßige SM-Meny hoher Zoisit-Ante wenig Karbonatk A 10/2 Bv 16-34cm: kaum SM, sehr w Epidot überwiegt mäßiger Opakani deutlicher Gehatt A 10/3 IIBv-T 34-55cn	n: ge, blaß-ge bil, Hornblei örner, kein venig der F Zoisit-Ante teil t an magne n:	elblich, Fra nde häufig e magnetis raktion <0, eil, Granat tischen Kö	ktion <0,1r stark gebi schen Körr 1mm, kaum ang irnern, eini	Besch mm überw eicht und her elöst, Horr ge Karbor	nreibung de legt stark oft fein-nac nblende de natkörner	es Schwer delig utlich ang	mineralspek	trums braunfleckig	1			
A 10/1 Ah+Bv 0-16cm mäßige SM-Men hoher Zoisit-Ante wenig Karbonatk A 10/2 Bv 16-34cm: kaum SM, sehr w Epidot überwiegt mäßiger Opakan deutlicher Gehalt A 10/3 IIBv-T 34-55cn geringe SM-Men	n: ge, blaß-ge bil, Hornble örner, kein venig der F Zoisit-Ante teil t an magne n: ge, blaß-ge	elblich, Fra nde häufig e magnetis raktion <0, eil, Granat tischen Kö elblich, kau	ktion <0,1r stark gebi schen Körr 1mm, kaum ang irnern, eini irnern, eini	Besch mm überw eicht und her elöst, Horr ge Karbor n <0,1mm	nreibung de legt stark oft fein-nac nblende de natkörner	es Schwer delig utlich ang	mineralspek	trums braunfleckig	1			
A 10/1 Ah+Bv 0-16cm mäßige SM-Men hoher Zoisit-Ante wenig Karbonatk A 10/2 Bv 16-34cm: kaum SM, sehr w Epidot überwiegt mäßiger Opakan deutlicher Gehalt A 10/3 IIBv-T 34-55cn geringe SM-Men wenige gebleicht	n: ge, blaß-ge örner, kein venig der F Zoisit-Ante teil t an magne n: ge, blaß-ge Hornblend	elblich, Fra nde häufig e magnetis raktion <0, raktion <0, raktion <0, elblich, kau en	ktion <0,11 stark gebi schen Körr 1mm, kaum ang kaum ang irnern, eini irnern, eini	Besch nm überw eicht und ner elöst, Horr ge Karbor a <0,1mm	nreibung de legt stark oft fein-nac nblende de natkörner	telig utlich ang	mineralspek	trums braunfleckig	1			
A 10/1 Ah+Bv 0-16cm mäßige SM-Men hoher Zoisit-Ante wenig Karbonatk A 10/2 Bv 16-34cm: kaum SM, sehr w Epidot überwiegt mäßiger Opakan deutlicher Gehalt A 10/3 IIBv-T 34-55cm geringe SM-Men wenige gebleicht geringer Opakan deutlicher Cabel	n: ge, blaß-ge örner, kein örner, kein zoisit-Ante teil tan magne n: ge, blaß-ge Hornblend teil	elblich, Fra nde häufig e magnetik raktion <0, raktion <0, raktion <0, raktion <0, raktion <0, raktion <0, raktion Kä elblich, kau len	ktion <0,11 stark gebi schen Körr 1mm, kaum angu irnern, eini im Fraktior	Besci nm überw eicht und ier előst, Horr ge Karbor 1 <0,1mm	nreibung de legt stark oft fein-nac ablende de natkörner	es Schwer delig utlich ang	elöst und oft	trums braunfleckig	1			
A 10/1 Ah+Bv 0-16cm mäßige SM-Men hoher Zoisit-Ante wenig Karbonatk Ka 10/2 Bv 16-34cm: kaum SM, sehr w Epidot überwiegt mäßiger Opakan deutlicher Gehalt KA 10/3 IIBv-T 34-55cn geringe SM-Men wenige gebleicht geringer Opakan deutlicher Gehalt	n: ge, blaß-ge bil, Hornbled örner, kein zoisit-Ante teil t an magne Hornblend teil t an magne	elblich, Fra nde häufig e magnetis raktion <0, ell, Granat tischen Kö elblich, kau len tischen Kö s. Anabu	ktion <0,1r stark gebi schen Körr 1mm, kaum ang innern, eini m Fraktior	Besci nm überw eicht und ier elöst, Horr ge Karbor n <0,1mm ge Karbor	nreibung de legt stark oft fein-nac nblende de natkörner natkörner	telig utlich ang	elöst und oft	trums braunfleckig	93)			
A 10/1 Ah+Bv 0-16cm mäßige SM-Men hoher Zoisit-Ante wenig Karbonatk A 10/2 Bv 16-34cm: kaum SM, sehr w Epidot überwiegt mäßiger Opakan deutlicher Gehalt A 10/3 IIBv-T 34-55cn geringe SM-Men wenige gebleicht geringer Opakan deutlicher Gehalt 0.3.4 Röntgendit	n: ge, blaß-ge bil, Hornblei örner, kein venig der F Zoisit-Ante teil t an magne n: ge, blaß-ge Hornblend teil t an magne ffraktion	elblich, Fra nde häufig e magnetik raktion <0, eil, Granat tischen Kö elblich, kau len tischen Kö s-Analy	ktion <0,1r stark gebi schen Körr 1mm, kaum angu irnern, eini m Fraktior irnern, eini se (RDA minerale	Besch mm überw eicht und er előst, Horr ge Karbor n <0,1mm ge Karbor) - Tom	nreibung de liegt stark oft fein-nac nblende de natkörner natkörner ninerale n der Err	telig utlich ang (Methc	elöst und off	trums braunfleckig 1990, 19	93)	mmentar		
A 10/1 Ah+Bv 0-16cm mäßige SM-Men hoher Zoisit-Ante wenig Karbonatk A 10/2 Bv 16-34cm: kaum SM, sehr w Epidot überwiegt mäßiger Opakan deutlicher Gehatt A 10/3 IIBv-T 34-55cn geringe SM-Men wenige gebleicht geringer Opakan deutlicher Gehalt 0.3.4 Röntgendit	n: ge, blaß-ge bil, Hornbled örner, kein zoisit-Ante teil tan magne Hornblend teil tan magne ffraktion Rela	elblich, Fra nde häufig e magnetis raktion <0, ell, Granat tischen Kö elblich, kau len tischen Kö s-Analy tive Ton	ktion <0,1r stark gebi schen Körr 1mm, kaum ang innern, eini im Fraktior im Fraktior se (RDA imineral c0,002mi	Besci nm überw eicht und ier elöst, Horr ge Karbor n <0,1mm ge Karbor) - Tonr gehalte i m [Rel'	nreibung de liegt stark oft fein-nac nblende de natkörner natkörner natkörner n der Fra %]	es Schwer delig utlich ang (Metho aktion	elöst und oft	trums braunfleckig	93) Ko	ommentar		
A 10/1 Ah+Bv 0-16cm mäßige SM-Men hoher Zoisit-Ante wenig Karbonatk A 10/2 Bv 16-34cm: kaum SM, sehr w Epidot überwiegt mäßiger Opakan deutlicher Gehalt A 10/3 IIBv-T 34-55cr geringe SM-Men wenige gebleicht geringer Opakan deutlicher Gehalt 0.3.4 Röntgendit	n: ge, blaß-ge bil, Hombled örner, kein Zoisit-Ante teil an magne Hornblend teil ffraktion Rela MLui 1)	elblich, Fra nde häufig e magnetis raktion <0, ill, Granat tischen Kö schan kö scha	ktion <0,1r stark gebi schen Körr fumm, kaum angu irnern, eini im Fraktior im Fraktior se (RDA imineral <u>c</u> (0,002mi) Kt ³)	Besch nm überw eicht und her ge Karbor n <0,1mm ge Karbor n <0,1mm ge Karbor n <0,1mm (<u>Rel</u> Ct :	nreibung de iegt stark oft fein-nac nblende de natkörner minerale n der Fra %] 3) ∑ k	telig utlich ang (Metho aktion (t+Ct	elöst und oft ode RAST	trums braunfleckig 1990, 199 nenge	93) Ko Kristalli	ommentar	Quell	fähigkeit
A 10/1 Ah+Bv 0-16cm mäßige SM-Men hoher Zoisit-Ante wenig Karbonatk A 10/2 Bv 16-34cm: kaum SM, sehr w Epidot überwiegt mäßiger Opakan deutlicher Gehalt A 10/3 IIBv-T 34-55cn geringe SM-Men wenige gebleicht geringer Opakan deutlicher Gehalt 0.3.4 Röntgendit	n: ge, blaß-ge bil, Hornbled örner, kein venig der F Zoisit-Ante teil t an magne n: ge, blaß-ge teil t an magne ffraktion ffraktion Rela ML 1) n 23	elblich, Fra nde häufig e magnetik raktion <0, eil, Granat tischen Kö elblich, kau len tischen Kö s-Analy tive Ton c m IIIIt ² 43	ktion <0,1r stark gebi schen Körr 1mm, kaum angu irnern, eini im Fraktior imern, eini im Fraktior imern, eini se (RDA imineralg (0,002mi) Kt ³)	Besch mm überw eicht und her előst, Horr ge Karbor n <0,1mm ge Karbor n <0,1mm ge Karbor n <0,1mm <u>ge Karbor</u> t Ct Ct	nreibung de iegt stark oft fein-nac nblende de natkörner minerale n der Fra %] 3) ∑ K	e (Methc aktion (t+Ct 34	elöst und oft ode RAST Gesamtm sehr kl	trums braunfleckig 1990, 199 nenge ein	93) Ko Kristall	ommentar isation	Quell	fähigkeit
A 10/1 Ah+Bv 0-16cm mäßige SM-Men hoher Zoisit-Ante wenig Karbonatk A 10/2 Bv 16-34cm: kaum SM, sehr w Epidot überwiegt mäßiger Opakan deutlicher Gehalt A 10/3 IIBv-T 34-55cn geringe SM-Men wenige gebleicht geringer Opakan deutlicher Gehalt 0.3.4 Röntgendif	n: ge, blaß-ge örner, kein venig der F Zoisit-Ante teil t an magne n: ge, blaß-ge Hornblend teil t an magne ffraktion Rela MLiii 1) n 23	elblich, Fra nde häufig e magnetik raktion <0, eil, Granat tischen Kö elblich, kau len tischen Kö s-Analy tilve Ton a tilt 2 m Illit 2 43 66	ktion <0,1r stark gebl schen Körr 1mm, kaum ang irnern, eini im Fraktior imern, eini imern, eini se (RDA mineralg (0,002mi) Kt ³⁾ 13	Besci mm überw eicht und er előst, Horr ge Karbor n <0,1mm gehalte i <u>m [Rel'</u> Ct : 21 9	nreibung de iegt stark oft fein-nac nblende de natkörner minerale n der Fra %] 3) ∑ k	e (Metho aktion (t+Ct 34 20	elöst und off ode RAST Gesamtm sehr kl mäßi	trums braunfleckig 1990, 199 nenge ein q	93) Kristalli gu	ommentar isation it	Quelli	rähigkeit eine
A 10/1 Ah+Bv 0-16cm mäßige SM-Meny hoher Zoisit-Ante wenig Karbonatk (A 10/2 Bv 16-34cm: kaum SM, sehr w Epidot überwiegt mäßiger Opakan deutlicher Gehalt (A 10/3 IIBv-T 34-55cm geringe SM-Meny wenige gebleicht geringer Opakan deutlicher Gehalt (0.3.4 Röntgendit (0.3.4 Röntgendit (0.3.4 Röntgendit (0.3.4 Röntgendit) (A 10/1 Ah+Bv 0-16cm (A 10/2 Bv 16-34cm) (A 10/3 IIBv-T 34-55cm)	n: ge, blaß-ge örner, kein- venig der F Zoisit-Ante teil t an magne n: ge, blaß-ge Hornblend teil t an magne ffraktion Rela MLiii 1) n 23 14 n 10	elblich, Fra nde häufig e magnetis raktion <0, eil, Granat tischen Kö elblich, kau len tischen Kö s-Analy tive Ton tive Ton 43 66 38	ktion <0,1r stark gebl schen Körr 1mm, kaum ang irnern, eini im Fraktior im Fraktior im Fraktior im Fraktior im Fraktior im Fraktior im Fraktior in Kt 3) 13 11	Besci mm überw eicht und er elöst, Horr ge Karbor n <0,1mm ge Karbor n <0,1mm ge Karbor t <0,1mm <u>ge Karbor</u> t <0,1mm (0,1mm) <u>ge Karbor</u> t <0,1mm (0,1mm) <u>ge Karbor</u> t <0,1mm (0,1mm) (0	nreibung de iegt stark oft fein-nac nblende de natkörner minerale n der Fra %] 3) ∑ k	e (Methor aktion (t+Ct 34 20 43	elöst und off ode RAST Gesamtm sehr kl mäßi hoot	trums braunfleckig 1990, 199 nenge ein g	93) Kristalli gu	ommentar isation it it	Quelli ki ki	fähigkeit eine eine

Reiteralpe Profil 11: RA_P11, Catena 2 (Wartstein-Schrecksattel)

11.1 Profilbesch	reibu	ng							-						2		
Bodentyp:			11	Brau	nerd	e-Ren	dzina										
Klasse:				Rend	zìna												
Höhe / Neigung /	Expos	sition		1700	m/2°/	96°E						1.1	1.00	-			
Lage und Relief:	202	1.1		R/H	; Ka	rrenfuß	snapf-	Füllun	g /Han	gfuß unt	erh	alb S	chicht	kopf	-		
Vegetationsgesel Bodenvegetation:	lschaf	t /		aufge	locke	ertes A	lpenr	osen-L	atsche	n-Gebü	sch	(Eric	o-Rho	doden	dretum	hirs	suti)
Profilmächtigkeit:			-	15cm	č.,				-		_					_	
Horizontfolge:				Ah / F	BV-T	/ mCv			_			_	_				
0 - 5cm	Ah			intens	siv du	Irchwu	rzelt,	Grasw	urzelfil	z, wenig	Fe	einerd	le, exti	em hu	umos; kr	ümelig,	
5 - 15cm	Bv-T		-	durch	wurz	schwa elt, mi	ttel hu	imos; i	subpoly	/edrisch	na	ch un	ten pla	a; attig, z	.T. stein	artig ver	backene
	1		-	Fragn Karre	nente nfüllt	e aus r ung in	oten u den m	und ge nCv hir	lben To nein; le	onnester uchtend	n, s rot	skelet tgelb	tfrei, k 5 YR 6	arbon i/6	atarm; z	ieht zap	fenartig als
>15cm	mCv			weiße Schw	er Ka imme	lk, rotg ende S	eäde chert	rt, mit ben	Tontap	eten; Fe	els r	mit Ru	undkar	renrel	ief; 7,5 \	YR 8/2,	
11.1.1 Probenen	tnahn	ne:															
Probe	Ho	rizont	E	ntnahm	etiefe)	Probe	ennumr	ner			-					
RA 11/1 03.07.02	Ah			0 -	5cm	C 11	RA 1	1/1 (Ah	0-5cm)								
RA 11/2 03.07.02	Bv	-T		5-	15cm	6.531	RA 1	1/2 (T C	-15cm)	1.000					_		
RA 11/3 03.07.02	mC	V.		>1	5cm	1.1	RA 1	1/3 (mC	v>15cn	n)		-					
11.1.2 Bodenfarl	oansp	rache	nach	MUN	SEL	L Soil	Color	r Char	t (2000)	-	-					
Probe			troc	ken						naß							
Nr. Horizor	nt [c	m]		-					-	1.01/07.0							
RA 11/1 Ah	-	0-5	10Y	R 3/2	VE	ery dark	grayi	sh brov	/n	10YR 2	2/2	Ve	ery dark	(brown	1	_	
RA 11/2 BV-1	1	5-15	5 YH	10/0	re	daish y	ellow			5YR 4/	0/2	ye	Nowish	red			
RA 11/3 MCV	Ale ale	>10	1,5	YR 8/2	pi	nkish w	nite		-	1,5 TR	8/3	pi	пк				
11.2. Bodenanal	ytiscr	e wer	te														
TI.Z.T Korngrois	enver	tenung		Var	a arê D	an fumi	in Cou	0/ /50	abadaa	hau Lâcu		rogiduu	malD	daa aar	tohondon	Castoine	
Probe			- 1-	NON	ngrois	en (huu)	In Gew	70 (FB	nooden	DZW. LOSU	Ings	residur	IIIIS LR	ues ans	stenenden	Gesteins,	
Nr. Horizont	[cm]	Skelet		gS 2000-63	0	mS 630-20	0 2	15 00-63	gU 63-20	20-6.3		fU 6.3-2	<2	S	U	10.00	т
RA 11/1 Ah	0-5	0		0	1	0		17,7	40,4	20,8	11	12,3	8.8	17,7	74.0	1	8.8
RA 11/2 By-T	5.15	0	-	0	+	20.0	1 1	23.6	13.4	13.4	+	11.9	17.6	43.6	387		17.6
RA 11/3 mCv	>15	Fels		0		0		0,2	4,5	27,0		36,0	32,3	0,2	67,5		32,3
11.2.2 Bodenphy	sikali	sche Ir	ndice	s													
Probe				Boden (\	iphys /erhä	ikalisch Itniszat	e India nlen)	ces		Charak (st = st	ark.	sierun sw =	g Bode schwa	enart ch; mi	= millel)	m	
an an an an an a		-	T	T	1	3.7.5	1		Turn	0- 0dl	14,1	0 - 00	andit, 1	- 101	Bodenad	. [Haunt-
Nr. Horizont	[cm]	U/T	T	/U L	J/S	U+T/S	5 m	U/gU	fU/gU		Bo	odena	rt		gruppe		gruppe
	0-0	8,4	0	1 4	4,2	4,6		0,5	0,3	sw toni	ger	U		1	enmschl	um	U
KA 11/2 BV-1	o-15	2,2	0	,5 (0,9	1,3	_	1,0	0,9	mi sano	dige	erL		- 1	typ. Lehr	n	L
RA 11/3 mCv	>15	2,1	0	5 3	338	499		6,0	8,0	st schlu	uffig	jer T		1.1	Schluffto	n	Ť
11.2.3 Bodenche	misch	e Wer	te (ke	ine Min	eralan	alysen v	on Pro	fil 11)									
Droho	1		-	-			K	ennwert	e des Fe	inbodens	/Lös	sungsre	siduum	s LR			
Probe		nH /Ca	CLA	Caro.	1.	Corn	ora Su	hetanz	M	CIN		Dithio	nit Evtra	ktion	1 Oval	at Extr	Eq.(
		priton	012)	[%]	10	[%]	19.00	6]	[%]	Gas		Dinito	[%]	Auon	UNA	Feo	Fed
Nr. Horizont	[cm]	-	_	2.12		-				1.1.1.1	1	Al	Fea	Mn		[%]	
RA 11/1 Ah	0-5			2,5	3	3,59	23	,4	0,30	45,3	1				1		
RA 11/2 By-T	5-15	4.3		1.8		1.43	2	5	0,29	4.9	0	17	1.95	0.04	1	140	0.04
RA 11/3 mOv	>15	81		97.3	-	1.65	n	h	nh	nh	0,	, IZ	1,20 n.h	0,01		1,12 1.b	0,01
Deska	- 10	0,1		01,0		100	- 06		10.05	1.0.	- 11		THD:	1.0.	1 1		11.0.
Prope								KAKeff	[mmol/kç	al							
and a farmer of		ĸ	[9/1	No	[9/.1	Ma	[%]	Ca	ro	61 A		1%1	Ц	[9/1	ZKAK	1.00	Basen-
Nr. Horizont	[cm]	N.	[/0]	INC	1/0]	Mg	[79]	Ud	1	N IN		[70]	- n-	[10]	Z win	Sä	ittigung [%]
RA 11/1 Ah	0-5	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.	D. n.t) .	n.b.	n.b.	n.b.	n.b.		n.b.
RA 11/2 BV-T	5-15	4,28	3,4	3,35	2,7	15,26	12,1	91,2	7 72	2,7 5,9	13	4,7	5,51	4,4	125,59	-	90,9

Reiteralpe Profil 12: RA_P12, Catena 1 (Plateaurand NNW, Diensthütte)

12.1 Profilbes	chreibu	ng			1								
Bodentyp:			Aol	ische	Braune	rde über l	Residua	alton aus	s weiße	m Dao	chsteink	alk	
Klasse:			Bra	uner	de								
Höhe / Neigung	/Expos	sition	156	4m/2	°/4°N								
Lage und Relie	f		R/I	H : Ka	arrenfuß	apf-Füllur	ng /Hang	fuß unte	rhalb S	chicht	kopf		
Vegetationsges	ellschaf	t/	aufo	relock	ertes Al	nenrosen-l	atsche	-Gehiis	ch (Fric	o-Rho	dodendr	etum	hirsuti
Bodenvegetatio	n.		aang	,01001	Citob / a	Johnoberri	Latoono	Cobdo	on (Eno	0 1010	uouonui	otun	mouth
Profilmächticke	it.		300	m	_				-				
Horizontfolgo	ill,		Ab	DUT	LITCH	II mCu							
Horizontioige.	1		Ann	04-1	/ 1110/	II IIICV							
0 - 5cm	Ah		inter	nsiv d ettfre	lurchwur i,schwac	zelt, Grasv h karbona	vurzelfil: thaltig, c	z, wenig deutlich g	Feinerd limmer	e, seh ühren	r stark h d; dunke	iumos; kri elgraubrau	imelig, in 10 YR 4/2
5 - 28cm	Bv-T		duro Frac	chwur amen	zelt, sch te, skele	wach hum ttfrei, mitte	os; krün I karbon	nelig bis : athaltig;	subpoly in Tasc	edrisc hen au	h, z.T. s Jsareifer	teinartig v nd: gelb 10	erbackene 0 YR 6/6
28-30cm	TCV		kau	m dur	chwurze	It schwac	h humos	s: subpol	vedrisch	n skel	ettfrei s	tark karbo	nathaltio als
			Kan	enfül	lung tase	chenförmig	in mCv	ausgreif	end, na	ch unt	ten tonig	e gelbe, v	veiße und rote
>20	-		Sch	initze	n, rotora	all Lo IR	0/4	Tarte	dia T	La serte	Duralle		7 EVD 00
>30Cm	mcv		well	ser Ka	aik, rot-g	elo bebani	dert, Z. I	. Tontap	eten; Fe	eis mit	Rundka	rrenrellef;	7,5 YR 8/2,
10445	1.0.1.		sch	wimm	ende Sc	nerben?							
12.1.1 Proben	entnahn	ne:	-			2.1.			-				
Probe	Ho	rizont	Entnah	metie	ie I	robennum	mer						
RA 12/1 03.07.0	2 Ah	-	0	- 5cm	1	RA 12/1 (Al	0-5cm)						
RA 12/2 03.07.0	2 BV	-1	5	- 280	n I	RA 12/2 (BV	-1 5-280	m)				_	
RA 12/3 03.07.0	2 10	V	- 20	8-30Cr	n li	RA 12/3 (10	V 28-300	cm)					
RA 12/4 03.07.0	2 m	V	1. 3.411	>3UCM	10.110	RA 12/4 (mi	JV >30cr	n)					
12.1.2 Bodenta	arpansp	racne na	ach MU	NSEL	L Soll C	olor Chai	τ (2000		_			_	
Probe		troc	ken				naß						
NF. HORIZOF	t [cm]	c 103	/D 4/0		anti anti da	h hanna	10.1	0 2/2		Jad. m	autob has		
RA 12/1 AII	0-	0 10	R 4/2	Ui bi	ark grayis		10	R 3/2	dork	uark gr	ayish brown	WI	
DA 12/2 DV-1	20-2	20 25	VD G/A	U	ownish y	h brown	25	VD 1/6	uan	yellowi	SI DIOWN		
RA 12/3 TOV	20-	0 75	VP 8/2	ni	nkich whi	to	7.5	VD 9/2	nink				
12.2 Rodonan	abuticab	a Worto	111 012	p	IINISII WIII	le	11,0	11 0/5	plitk	-			
12.2. Douenan	alytisch	toilung											
Droho	Jisenver	lenung	Vornari	il an l	unal in Cu	W 0/ /Eain	hadaa h	nu Lägun	antonidu	(ima 1)	D das as	alabaadaa	Containal
Probe			Norright	Jisen [µmj m G	ew% (Fein	bouen b.	2w. Losun	gsresidu		R des an	stenenden	Gesteins)
Nr. Horizont	[cm]	>2000	gS 2000-6	630	mS 630-200	fS 200-63	gU 63-20	mU 20-6,3	fU 6,3-2	<2	S	U	Т
RA 12/1 Ah	0-5	0	0	1.1.	0	15,5	37,7	23,5	13,9	9,4	15,5	75,1	9,4
RA 12/2 Bv-T	5-28	0	1	1.1	1	11,3	23,4	26,3	15	22,0	13,3	64,7	22,0
RA 12/3 TCv	28-30	0	1	7.41	1	12,7	16	26,1	18	25,2	14,7	60,1	25,2
RA 12/4 mCvLl	R >30	Fels			1					1-1			
12.2.2 Bodenpl	ysikalis	sche Ind	ices										
Probe			Bode	enphy (Verh	sikalische ällniszahl	Indices en)		Charakte (st = stat	erisierun rk; sw =	g Bode schwar	nart ch; mi = n	nittel)	
Nr. Horizont	[cm]	U/T	T/U	U/S	U+T/S	mU/gU	fU/gU	U UUIL	Bodenar	t	Bo	denart-	Haupt-
RA 12/1 Ah	0-5	80	0.1	4.8	55	0.6	04	sw topia	erll		Joh	mschluff	g, uppo
RA 12/2 BV-T	5-28	3,0	0.3	4,0	6.2	1.1	0,4	st tonige	rU		To	nschluff	u
RA 12/3 TCv	28-30	27	0.4	10	EA	4.6	4.4	cobleff.	orl			anoble ff	
STORY IN	20 00	2,1	0,4	4,0	5,4	1 1,0	1-1(1-	Ischiung	CIL	_	101	ISCITIUT	U

Reiteralpe	Profil 1	2: RA	P12,	Catena	1	(Plateaurand NNW,	Diensthütte))
------------	----------	-------	------	--------	---	-------------------	--------------	---

12.2	3 Bode	ncher	nische	Wer	te			_		-		_	-			_		1		_	1	
Probe	C							Ke	ennwe	erte des	Feint	odens	s /Lö	sungsre	esiduu	ms LR						
			pH (CaCl ₂)	Ca	CO3 [6]	Corg [%]	org.	Substanz [%]	1	N [%]	C	/N	ł	Dithio	onit-Ex [%] Fed	draktion	Mn		Oxa	lat-E: Fe _o [%]	xtr.	Fe _d / Fe _d
Nr.	Horizont	[cm]	_	2	4	7 94	-	13.7	+	0.30	26	15	0	h	1.01		n h.	-		0 33		0.33
12/1	AU	0-0		-	~	1,04		10,7		0,00		1.0	0.	.0.	1,01		n.p.	-		0,00		0,00
RA 12/2	Bv-T	5-28	4,3	4	,8	1,26		2,2	16	0,29	4	,3	0,	25	0,97		0,03		(0,21		0,22
RA 12/3	TCv	28-30	7,0	7	,7	1,44		2,5		0,28	5	,1	0,	18	2,16	i (0,04	1	(0,11		0,05
1	_	-		-	1				_	-	KAK	eff [m	mol/l	kg]	-		-	-	_	-	_	-
Nr.	Horizont	[cm]	K		[%]	Na	[%]	Mg	[%	5] (Са	[%]	1	AI	[%]	H*	[9	6]	Σ	KAK	S	Basen- attigung [%
RA	Ah	0-5	n.b	•	n.b.	n.b.	n.b.	n.b.	n.t	D. 17	1.b.	n.b	e i	n.b.	n.b.	n.b	. n.	b.	n	ı.b.		n.b.
RA	Bv-T	5-28	0,9	4	1,4	2,80	4,0	2,43	3,	5 56	6,46	81,9	9	3,35	4,8	3,00) 4	3	68	3,97		90,8
12/2 RA	TCv	28-30	1,5	6	0,7	0,39	0,2	1,69	0,6	8 20	9,87	97,8	9	0,24	0,11	0,65	5 0,	30	21	4,40		99,6
12.3	Minera	lanalv	tische	Wer	e	1		<u> </u>				-	_1		1	-		-	-	-	_	_
12.3.	1 Rönt	genflu	oresze	nz-A	nalys	e (RF/	4)					_				_	_					-
-				_			-	+	laupt	element	gehal	te [%]			- 1					-		
	Probe	SiO ₂	Al ₂ O ₃		Fe ₂ O ₃ Total	FeO	Fe203		MnO	MgO	CaO		Na ₂ O	K ₂ O		TIO2	P205			H2O	Loss on ignition	sum of conc.
RA 1 5-150	2/2 Bv-T,	58,	53 17,	96	8,47	1,45	7.	02 0,1	124	2,3	0,	92	0,78	3 2,	87	0,97	0,1	5	2,35	5	7,64	91,83
		1.0	1.0		T. C.	1 ~		Spi	urene	lementg	ehall	e (ppn	1]	1.00				1	- 1-		-	1 2
RA 1	9 2/2 Bv-T,	330) 110	21	183	12	19	49	ND 20	Nd 45	NI 95	27	130	<0.	10	Sr 1 120 2	n U 0 <5	15	3	Y 52	2n 103	278
12.3.	2 Geoche	emische	Indices		1.000		-		200		-			1			21.0	1	1		3.6.2	
			15.00		10.0			V	Geoc	hemisch	ie Ind	ices	- 1						_	1.0		-18.6
Prob		SIO2/ Al2O3	Fe0/ Fe2Os		CaO/ MgO	K ₂	0		Al ₂ C	0/) ₃	K2()/ Na ₂	0	CaO+N Al ₂ O ₃	a20+P	(₂ O/	+Fe2C	Al ₂ O3 3		Cal Mg	0+ 0	Sr/Ba
RA 1 Bv-T	2/2	3,26	0,:	21	0,4	0	0,3	2		0,04	13	3,68			0,25		8	3,51		÷	3,22	0,36
12.3	.3 Sch	vermi	nerale	Met	node	RAST	1990	1993)								_						
Prob RA 1	e ⁻²⁾ 2/2 Bv-T {	5- G	Z 6	T 1	R 6	Ap 1	Gesam	tspektrun St 1	Di 0	Mzahl- 9 And 0	%) <u>;</u> F	Hbl 14	n 0,1	Ep+2 64	im Zo	Sons	stige " 1			Ko	ornsum 304	me
TOCH	-	1				Resispe	ktrum	ohne Gra	nat (t	bezogen	aul 1	00%);	Frai	ktion 0,	1-0,25	mm						-
Prob RA 1 15cm	e 2/2 Bv-T {	5-	Z 7	τ 1	R 6	Ap 1		St 1	Di 0	And 0		Hbl 15		Ep+Zo 67	1	Sonstig 1	je 1)			Kor	nsumm 290	le
G = (Epido	Granat; Z ote (+ Zois 1) Sc 2) Ar	= Zirkon sit + Klin onstige: ngaben ((+ Xenot ozoisit + 4 Spinelle gelten für	im + 1 feinkö al Korng	Vonazit rnige A prößenfi), T = Tu ggregati raktion <	urmalin e von F :0,1mn	; R = Ruti 'umpellyi	il; Ap t)	= Apatit	; St =	Stauro	olith;	Di = D	isthen	, And =	Andal	usit; H	b =	Horni	blende;	Ep+Zo =
gerin	ge SM-Me	enge, br	äunlich, r	iur Fra	aktion <	0,1mm,	B keine l	eschreibu Karbonati	ing de körne	as Schw r, hoher	ermin Geha	eralsp It an n	nagn	ums netische	en Kör	nern, m	äßiger	Opak	antei	il; Ve	rwitteru	ngsgrad
12.3	4 Rönt	ar aendi	ffraktio	ns-/	nalva	se (RD	A) - 1	onmin	eral	e (Met	hod	RA	ST	1990.	1993	3)	-	-	_	-		-
		Rel	ative Ton	miner	algehal	te in der	Frakti	on <0,002	2mm [[Rel%]	T					K	ommei	ntar				
Probe	9 2/2 Bv-T	Sm4/	ML _{int} 8	0	52qu	Kaolii 13	nit ^{ia)} }	Chlorit 26	2	39	-	Gesar	mtme näßig	enge I	K	ristallisa mäßig	ation	-	-	Que	llfähigk rhande	eit n
J-10(1) MI 2) IIIi 3) Ka 4) Sr	0 8 52 ^{qu} 13 ML _{att} = Mixed-layer-Material, d.h. unrege Illite (10 Å-Mineral, teilweise randlich auf Kaolinit (7 Å-Mineral); Chlorit (7 Å-Mineral); Smektit						e Wechson), Index 2	ellage zeigt r	rungsm randliche	ineral e Aufi	e aus veitung	Illit u g der	ind Smi r Schicl	ektit, r hten a	eich an n	Illit (>f	30 Rel	%	llite)		
		Relati	ve Häufig	keit s	sonstige	er Minera	ale	manant				ianle	_		0.		alaris I.				_	
KA 1. 5-150	z/z BV-T m	Qz	Kompone	ente	-	Alb	>KF	nponente	<u>. </u>		V	venig	-		Spi	Jren / B	emerk kein Ci	ungen c und	Dol	-	-	_
Oz =	Quarz: KI	F = Kalif	eldspäte:	Alb =	Albit: C	C = Cal	zit Dol	= Dolom	if							-		-				

Reiteralpe Profil 13: RA_P13, Catena 3 (Traunsteiner Hütte- Weitschartenkopf)

13.1 Profilbeschr	eibung		1.11									
Bodentyp:		Au	tochth	ione Br	aunerde, I	eicht ps	eudove	ergleyt	auf Go	saukal	k	
Klasse:		Br	aunero	de								
Höhe / Neigung / E	Exposition	1 15	70m/2	°/ 156°S	S							
Lage und Relief:	(=	R	H;Ha	angfuß u	interhalb v	on Schio	htkopf					
Vegetationsgesells	schaft /	au	fgelock	ertes Al	penrosen-	Latscher	n-Gebüs	sch (Eric	o-Rho	dodend	Iretum	hirsuti),
Bodenvegetation:		W	eideras	en mit D	Dolinen, z.	r. wasse	rgefüllt					
Profilmächtigkeit:		45	cm									
Horizontfolge:		Ah	/Bv/	Bv-Sd /	mCv							
0 - 8cm	Ah	int sk	ensiv d elettfrei	lurchwur i, mittel	zelt, Grasi karbonatha	wurzelfilz altig, deu	, wenig tlich glir	Feinero	de, seh nrend:	r stark graubra	humos; krü iun 10 YR	imelig, 4/2
8 - 18cm	Bv	du bra	rchwur aungelt	zelt, mit o 10 YR	tel humos; 6/6	krümelig	y bis sul	opolyed	risch, s	kelettfr	ei, stark ka	rbonathaltig;
18-45cm	Bv-Sd	ka Ble he	um dur eichme Ilbraun	chwurze rkmale (10 YR (elt, schwac (marmorier 6/4	h humos t, Manga	; subpo instiche	lyedrisc), tasch	h, skel enförm	ettfrei, ig in de	karbonatre n mCv aus	ch, leichte greifend;
>45cm	mCv	Ar	kosear	tider Go	saukalk, z.	T. mit To	ontapete	en: 7.5)	/R 8/2			
13.1.1 Probenent	nahme:	1.1		9. 00	and and and			1.1.4				
Probe	Horizon	t Entra	hmetief	e l	Probennum	mer		_				
RA 13/1 03.07.02	Ah		0 - 8cm	1	RA 13/1 (A	n 0-8cm)						
RA 13/2 03.07.02	Bv		8 - 18cr	n	RA 13/2 (B	/-T 8-18c	m)					
RA 13/3 03.07.02	Bv-Sd	1.1	18-45cr	n	RA 13/3 (TO	Cv 18-450	m)					
RA 13/4 03.07.02	mCv		>45cm	6. *	RA 13/4 (m	Cv >45cn	1)					
13.1.2 Bodenfarba	ansprach	ie nach M	UNSEL	L Soil	Color Cha	rt (2000						
Probe Nr. Horizont	[cm]	trocken				naß						
RA 13/1 Ah	0-8	10 YR 4/2	dar	k grayish	1 brown	10 YR	3/2	very	dark g	rayish b	rown	
RA 13/2 BV	18.15	10 YR 6/0	ligh	whish ye	llOW	10 TR	4/0	dark	vollow	ish brown	in	
RA 13/4 mCv	>45	7.5 YR 8/	2 pin	kish white	A	7.5 YR	8/3	nink	yenow	ISTIDIOW	10	
13.2. Bodenanaly	tische W	erte	- p			130 110	0.0	pint		_		
Prohe		Kornar	SRen fu	ml in Ge	w % (Feinh	oden bzv	/ Lösund	nsresidu	ims i R	des ans	tehenden G	lesteins)
Nr. Horizont Iom	I Skolo	tt ac	I losse	me	felle	att T	mll	AL	T	uca alla		nosterno)
	>200	0 2000-6	30 E	330-200	200-63	63-20	20-6,3	6,3-2	<2	S	U	T
13/1 U-		0		0	1,0	14,1	41,0	33,9	9,0	1,0	09,0	9,0
RA BV 8-1 13/2	18 0	0		1,0	5,8	18,2	25,7	21,9	27,4	6,8	65,8	27,4
RA Bv-Sd 18- 13/3	45 0	3,3		3,1	11,2	14,4	19,3	16,0	32,8	17,6	49,7	32,8
RA mCvLR >4 13/4	15 Fels					1				E.		1. T
13.2.2 Bodenphys	ikalische	Indices										
Probe		Bo	denphy (Verh	sikalisch ältniszah	e Indices ilen)		Charak (st = sta S= San	terisierur ark; sw = id; U = S	ng Bode schwa chluff; 1	enart ch; mì = l = Ton;	mittel) L = Lehm	
Nr. Horizont	[cm] U	/T T/U	U/S	U+T/S	mU/gU	fU/gU		Bodena	art	В	odenart- gruppe	Haupt- gruppe
RA 13/1 Ah	0-8 9	3 0,1	89,6	99,2	3,0	2,4	sw toni	gerU		Le	hmschluff	U
RA 13/2 By	8-18 2	4 0,4	9,7	13,7	1,41	1.2	stechlu	ufficer T		G	chluffton	Т
RA 13/3 By-Sd 1	8-45 1	5 07	28	47	13	11	or ound	utter T	-		abluffi	T T
181 1010 00-00 1	0.40	0,1	2,0	10	1.0	0.0	mi schl	umger 1	_	S	chiumon	

Reiteralpe Profil 13: RA_P13, Catena 3 (Traunsteiner Hütte- Weitschartenkopf)

13.2.3 Bod	enchei	nisch	ie Wei	rte			-	Ke	nnworte	dac Fe	inhodo	ne / őe	under	seiduum	e I R	_	_	_	_	_	-
Probe								A lorg Substanzi N				C/N Dithionit-E								Fo	
				[%]		[%]	[%]		[%]	CAR			[%] Fed	Mr	Mn		Feo [%]		Fed		
Nr. Hor	zont	[cm]		-	1.2	1				-			1				_			_	_
RA 13/1 Ah		0-8			4,2		7,81	13,4		0,30	26,0	26,0 n.t		n.b.	n.b).	n.b.			n.b.	
RA 13/2 Bv	RA 13/2 Bv 8-18		3,9		9,5		2,35	4,1		0,27	8,7	8,7 0,3		35 1,45		0,02		0,72		0,50	
RA 13/3 Bv-Sd 18-45		6,2		14,6 1,44		1,44	2,5		0,29	5,0	i,0 0,36		1,63 0,0		5 0,		0,20	,20 0,12		12	
Probe									KAKeff	[mmol/ł	gl										
0 - W.			к	[%]	Na	[%]	Ma	1%1	Са		[%]	AI	[%]	H+	1%1	51	KAK		B	asen-	
Nr. Hor RA 13/1 Ah	zont	[cm]	nh	nh	nh	nh	nh	nh	nh		h	nh	nh	nh	nh		h	-	satti	gung [%	0]
RA 13/2 By		R-18	0	0	2 13	3.0	1.70	24	9.91		3.8	20.75	41.5	28.18	30.3	71	68	-	-	10.2	-
RA 13/2 BV 6		18.45	45 0 0		2,10	0,0	1,70	2 1.4 70.64		5 0	96.8 0		0,6 0.86		12	72	,00 19,2				
12 0 Minow	RA 13/3 BV-S0 18-45			0	0	0	1,02	1,4	10,0	0 8	0,0	0 0,42		0,00	1,2	/2,96		98,2			
13.3 Minera 13.3 1 Pôn	alanaly	tisch	e wer	te																	
10.0.1 1001	genne	lores	COLLET?	anary	Se (IN	~		Hau	teleme	ntgehall	e [%]		-			-	-	_	-	-	-
		T	T			T			1				1		T		T	-	T	-	
Probe	Probe OS		Ea.O.	Total	FeO	Fe,O,	222	MnO	MgO	CaO		Na ₂ O K ₅ O			TIO ₂	P ₂ O ₅	1	H ₂ O	1	Loss or ignition	sum of conc.
RA 13/2 Bv 8-18cm	58,75	16,	52 8	9,63	2,13	1	7,50	0,08	1,8	2 0	,24	0,45	2,4	8 0	,99	0,15		2,30	1	0,63	89,2 1
Droho	I Pa	Ca	I Co	T Cr	Lou	I Co	1.0	Spure	elemen	Igehalt	(ppm)	Dh	1 5	0	C. [Th		IV	V	70	7.
RA 13/2 Bv	200	00	20	100	14	20	5		22	75	26	14		140	110	16	5	164	24	120	252
8-18cm	508	50	20	100	1.41	20		20	- 55	10	- 50	14		1,10	112	10	5	101	ar	130	200
13.3.2 Geo	chemi	sche	Indice	es		_	_	Go	chomie	cho Ind	inor	_	_		_	_	_		_	_	_
Probe		SiO	F	eO/	CaO	1	CaO/	Na ₂ O	Kz	0/	CaO	Na ₂ O	+K20/A	1203	SiO ₂ +/	Al ₂ O ₃		CaO	0	Sr/Ba	-
DA 12/2 Du 9 19am		Al ₂ O	O3 Fe2O3		MgO K2O		Al ₂ O ₃ Na ₂		5.51	51		0.19		+Fe ₂ O ₃ 82.77		-	MgO 2.06		0.36		
13.3.3 Sch	wermi	neral	e (Met	hode	RAS	T 199	0, 19	93)		0,01	-	0,	15	-	0	6111	-	2,0	0	0,	00
		_	· ····			Gesa	mtspek	trum (Ke	ornzahl-	%); Fi	aktion (),1-0,2	5mm 2				_				
Probe RA 13/2 By 8-18cm		G	5 Z T 1 2			R Ap S			St Di And <1 0 0		1 1	Hbl Ep+2 13 82)+Zo 82	20 Sonstige 0			e Kornsumme 300			
Tur Tore Dr o	TOUTT			-	Rests	pektru	m ohne	Granat	(bezog	en auf 1	00%); F	raktio	n 0,1-0	,25mm	-					000	-
Probe		Z T R 1 2 1			A	Ap St Di 1 <1 0			And	d Hbl 13		Ep+	Ep+Zo So 82		Sonstige 0		9	Kornsumme 298			
G = Gra	anat; Z =	Zirkon	(+ Xend	otim +	Monazit), T = 1	Furmal	in; R = F	tutil; Ap	= Apati	t; St = S	tauroli	th; Di =	Disther	n, And	= And	alusi	t; Hbí =	Horn	blende;	0
Ep+Zo	= Epidot	e (+ Zo	isit + Kli	nozois	it + fein	körnige	e Aggre	egate vo	n Pump	ellyit)	pralene	kleums		_	_		-		_	-	
 geringe keine K opakrei 	SM-Mer arbonatk ch	nge, oc törner,	kerfarbe mäßige	en, wer r Geha	nig Frak It magn	tion >0 etische	,1mm er Mine	rale			and to pro-										
- wenig v	erwittert	ffrak	tions.	Anah	ico (P		Ton	miner	lo (M	thod	PAS	T 100	00 10	031		_	-	_			
10.0.4 1101	Igene	Rel	alive To	nmine	algehal	le in de	er Frak	tion <0,0	02mm [Rel%]		1 10		501	Kor	mmen	ar				
Probe		Sm ⁴)	 ML_{mit} ¹) Illit ²) Kaolinit ³ 					Chlorit SK+Ch			G	Gesamtmenge			Kristallisation			C	Quellfähigkeit		
5) N 6) II 7) K 8) S	ILan = Mi lite (10 Å aolinit (7 mektit	xed-lay -Miner A-Min	rer-Mate al, teilwe eral); Cl	o erial, d. eise ra hlorit (7	53 h. unreg ndlich a 'Å-Mine	gelmäß ufweitt eral)	s lige We bar), In	2. echsella dex zeig	gerungs t randlic	32 mineral he Aufv	e aus III veitung	it und der Sc	Smekti hichter	t, reich a 1 an	an Illit (>60 R	el%	5 Illite)	24		
	Rela		ive Hau	figkeit	sonstig	er Min	erale											_			_
RA 13/2 By 8	18cm	Hau	ptkom	pone	nte	N	leben	kompo	nente	100	we	nig			S	purer	1/E	Bemer	kung	gen	_
		Qz				A	ID>+		1. 5	1	_	_		_	ke	ein C	c ur	nd Dol	2		_

Reiteralpe Profil 14: RA_P14, Catena 1, (Wartsteinhaus)

14.1 Profilbesch	reibung												
Bodentyp:	_	Äo	Äolische Braunerde auf Äolium-Kolluvium über weißem Dk										
Klasse:		Bra	Braunerde										
Höhe / Neigung /	Exposition	ר 17:	1720m/ 10°/ 156°S										
Lage und Relief:		R/	R / H ; Unterhang										
Vegetationsgese Bodenvegetation	llschaft / :	auf alp	aufgelockertes Alpenrosen-Latschen-Gebüsch (Erico-Rhododendretum hirsuti) mit alpinen Rasen										
Profilmächtigkeit	-	550	55cm										
Horizontfolge:		Ah	Ah / Bv /IImCv										
0 - 3cm	0 - 3cm Ah		intensiv durchwurzelt, Graswurzelfilz, wenig Feinerde, sehr stark humos; krümelig, skelettfrei, mittel karbonathaltig, deutlich glimmerführend; schwach toniger Schluff; graubraun 10 YR 4/2										
3 - 55cm	Bvh	dur mit	durchwurzelt, mittel humos; krümelig bis subpolyedrisch, skelettfrei, stark karbonathaltig; mittel toniger Schluff; gelbbraun 2.5 Y 6/3										
>55cm mCv		we	weißer Dachsteinkalk mit roten Tontapeten; 7,5 YR 8/2										
14.1.1 Probenen	tnahme:					- C - C - C - C - C - C - C - C - C - C							
Probe	Horizor	nt Entna	hmetiefe	Proben	Probennummer								
P14/1 03.07.02	Ah		0 - 3cm	P14/1 ((Ah 0-3cm)								
P14/2 03.07.02	Bv		3 - 15cm	P14/2 (Bv-T 3-1	J-15cm)							
P14/3 03.07.02	14/3 03.07.02 mCv		>15cm	P14/4 ((mCv >15	ōcm)							
14.1.2 Bodenfar	bansprack	ne nach ML	JNSELL So	il Color (Chart (2	000)							
Probe		trocken				naß							
Nr. Horizont	[cm]			2.2									
14/1 Ah	0-3	10 YR 4/2	dark gray	ish brown	n l	10 YR 3/2	very dark grayish brown						
14/2 Bv	3-15	2.5 Y 6/3	5/3 light yellowish brow			2.5 Y 3/3	dark olive brown						
14/3 mCv	>15	7,5 YR 8/2	pinkish w	/hite		7,5 YR 8/3	pink						

Reiteralpe Profil 14: RA_P14

14.2. E	Boder	nanaly	tisch	e Wer	te; 14	1.2.1 1	Corng	röße	nvertei	lung	-										
Probe						Korr	größe	n [µm]	in Gew.	% (Fein	boden l	bzw. Lö	sungs	sresiduu	ms LR	des ar	istehen	den	Gesteins	5)	
Nr.	Horizo	ont	[cm]	Skele >2000	tt 2	gS 000-63	0	mS 630-20	0 200	S 1-63	gU 63-20	ml 20-6) 3,3	fU 6,3-2	T <2	s	i i	U		Т	
14/1	A	h	0-3	0	1.1.1	0		1,2	1,	.0	24,5	40,	8	21,5	11,0	2.	2 8	6,8		11,0	
14/2	8	3v	3-15	0		0		1,0	8,	,0	26,8	32,	1	19,4	13,0	9,	0 7	8,3		13,0	
14/3	m	Cv	>15	0		0		13,5	5,	7	0	29		30	21,8	19	,2 5	9,0	1	21,8	
14.2.2	Boder	physi	kalisch	ne Indi	ces	1.1			1.1					-					2		
Probe						Bode	enphys (Verhà	ikalisci iltnisza	he Indices hlen)	5		Char (st =	akter stark	isierung ; sw = s 11 = Sch	Boder chwacl	nart h; mi =	mittel)	m			
Nr.	Hori	zont	[cm]	U/T	Т	7U	U/S	U+T/	S ml	J/gU	fU/gU		all st	Bodena	rt		Bode	enart	-	Haup	t- be
14/1	A	h	0-3	9,3	0	1	89,6	99,2	2 3	3,0	2,4	sw to	niaer	۰U			Lehm	schl	uff	U	-
14/2	B	ŝv	3-15	60	0	2	87	10.1		2	07	mi to	niger	11			Lehm	schl	uff	U	_
14/3	mC	VLR	>15	27	0	1	31	10,1		14-	0,1	echli	figor	1			Tone	chlu	ff	11	
14.2.3	Boder	chem	ische \	Nerte	10	4	5,1	4,2	_			Ischie	mger	L		-	1015	Gillu		U	
Duk.					-				Ken	nwerte	des Fe	inboder	ns /l ö	sunasre	siduun	nsIR	-	-	-		-
Probe				nH (C	aCla)	CaCO		Corn	lora Sub	stanzl	N	C/N		Dithio	nit-Ext	raktion		Oxa	lat-Extr	TE	P./
				pinto	1012)	[%]	5.	[%]	[%]		[%]	0		Diano	[%]	DALION		UND	Feo	F	ed
Nr.	Hor	izont	fcml	L						_				AL	Fed	M	In		[%]		
14/1	1101	h	0-3	5,	1	5,1		7 70	12		0.21	25,1		n.b.		n.	b.	-	-	1	-
14/2	I	3v	3-15	1		9.7		1,19 C.C.A	10,4	*	0,31	22,1			0.04			-	0.04	1 0	26
14/3	mC	VLR	>15	4,0		97.2		0,04	11,4	*	0,50		+	n.D.	0,01	1.	D.	-	J,Z1	0.	20
Prohe	mCv > r Bodenphysikali Horizont [cr Ah 0- Bv 3-1 mCvLR >1 Bodenchemisch			8,	<u> </u>			n.p.	[·	n.o.	n.b.	-	n.o.	n.p.	[n.	0.	-	n.p.	<u> </u> n	.D.
11000				-	1	-			M	AKen	[mmol/k	.gj		1 1	-	-	1	_	-		-
Nr	Hor	izont	[cm]	K	[%]	Na	[%]	Mg	[%]	Ca	1	%]	AÍ	[%]	H*	[%]	ΣK	AK		Basen-	%1
14/1	7	h	0-8	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	. n	ı.b.	n.b.	n.b.	n.b.	n.b.	. n.t	b.		n.b.	141
14/2	E	3v	3-15	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	Г	ı.b.	n.b.	n.b.	n.b.	n.b.	. n.t	b.		n.b.	
14.3 Mi	Horizont [ci Ah 0- Bv 3- mCvLR >1 Bodenchemiscl Image: Comparison of the second			Verte:	14.3.1	Rönte	enflu	oresz	enz-Ana	alyse	(RFA)			1			1	-			
							-		Haupte	elemen	itgehalte	∋ [%]				-					
Prot	be	SiO ₂	AlzOs	FeoD	Total	FeO	FeaOa		OnM	MgO	CaO	0.11	Nazu	K20		TIO2	P205		H ₂ O	oss on gnition	sum of
14/2 8			-	-	-	-	-						-	-	-	-		+	-		02.6
3-15cm		52,97	15,	09 1	0,64	4,01	6	,63	0,41	1,51	1/	41	0,94	1,80		1,09	0,37		2,77	17,05	02,0
			1.0		1.0	1.8	1.0	-	Spurene	lement	gehalte	[ppm]		1.0	- 1	- 1	-				1.0
Probe 14/2 By	6	Ва	Ce	Co	Cr	Cu	Ga	La	a ND	Nd	NI	Pb	Rt	S	03	Sr	Th	U	V	Y ZI	1 Zr
3-15cm		366	117	21	122	19	19	68	3 20	51	50	335	10	5 0,	16	110	19	5	122	57 26	3 385
14.3.2	Geoc	hemis	che In	dices					-			_				_					-
Probe	-		I SiO ₂	/ IF	eO/	I CaO	10	CaO/	Geod NavO/	K ₂ C	che Indi)/	ces CaO+	Na ₂ O	+K2O/A	0.1	SiO ₂ +	Al-O-	-	CaO+	Sr/Ba	3
11000		_	AlzO	3 F	82O3	MgO	- i	(20	Al2O3	Na	20	ouo	Truz O		203	+Fe ₂ O	3		MgO	Onde	
14/2 Bv	3-15c	m	3,5	51	0,60	0,9	3	0,78	0,06	11-1	1,91		0,	27		7	4,69		2,92	0	,30
14.3.3	Schw	ermin	erale (i	vietno	ie RA	51 195	Gesa	misnel	kinim (Ko	mzahl-	%): F	raktion	0.1-0	25mm	-	_		-			-
Probe 14/2 Bv	3-15c	m	G 5	Z 2	T <1	R 1	Ap 0		St 1	Di 0	And 0	H	lbl 14	Ep 7	+Zo 7	S	onstige 0		K	Kornsumm 300	e
Probe 14/2 By	3-150	m	Т	Z 2	T <1	Rests F	bektrur	Ap 0	Granat (I St	bezoge	Di Di 0	00%); F And 0	raktio	n 0,1-0, Hbi 14	25mm Ep+	Zo	Son	stige	9	Kornsur 286	nme
G = Gra Epidote Gebalt	anat; Z + Zoi	= Zirko sit + Kli	n (+ Xer nozoisit Mineral	notim + + feinki	Monazi ornige /	t), T = Aggrega	Furmal ate von	in; R = Pump	Rutil; Ap ellyit); gei	= Apat ringe S	it; St = \$ M-Menç	Staurolit ge, bräu	h; Di nlich,	= Disthe keine F	en, And raktion	1 = And >0,1m	lalusit; H hm; kein	Hbl = ne Ka	= Hornble arbonatk	ende; Ep+ örner, hol	Zo = ter
Gunait	magne	130(101	Relati	ve Tonr	nineral	gehalte	in der	Frakio	n <0,002r	nm [Re	9%]					Kon	nmentar				
Probe			Sm4)	ML	1)	Illit 2)	Kao	linit ³⁾	Chlori	it v	Σ	Gesa	mtme	enge	Kri	stallisa	tion		Que	ellfähigkeil	ť.
14/2 Bv	3-150	m	0	9		46	-	0	45	K	45	-	-		-	-		-		-	
			Relativ	e Häufi	gkeit s	onstige	r Mine	rale	1	-					1						
14/2 Bv	3-150	m	Alb	compon	ente	-	Ne	benko	mponente	9	_	Wenig		_		S	puren / E	Bem	erkunger Jol	n	_
			1.111				1 44	-								I INC		. na 🖬			

10.3 Korngrößendaten - Böden

Mittlere Korngrößenverteilung [Gew.-%] - Böden

Nr. 1

Zugs	oitzp	latt / V	Vetter	stein	gebin	ge				Daten	als arill	melisch	les Mit	tel m=	4) dan	geste	AU .	_						_
Pr	spitzplatt / Wettersteingebirge Daten als drittmeter Probenbeschreibung Skeletti [%] Komgrößen (Gew%) Feinboden P 100 90 4 100 90 90 4 100 90 90 90 4 100 90 90 90 90 100 90 90 90 100 90 90 100 90 90 100 90 90 100 90 100 90														Bod	enphy	sikalis	iclie In	dices			Charakterisierun (sl = stark; sw = = Schluff; T = To	g der Bodenart schwach: mi = n n; S = Sand; L =	nittel); = Lehm
Profil	Probe	Horizont	Tiefe [cm]	<2000µm	gS (2000-630µm)	(630-200µm)	fS (200-63µm)	gU (63-20µm)	mU (20-6,3µm)	AU (6,3-2µm)	T<2µm	Summe	S [%]	N [%]	T [%]	UIT	TIU	SIN	S/L+N	mD/gU	10/gU	Bodenart	Bodenart- gruppe	Hauptgruppe
	0				-				Lößt	oraune	rden											1		
P17/ZP	17/1	Ah	0-4	0	0,6	2,1	2,6	21,3	38,1	19,6	16,0	100,3	5,3	79,0	16,0	4,9	0,2	14,9	17,9	1,8	0,9	mi toniger U	Lehmschluff	U
	17/2	Btv1	4-25	0	0	0,4	0,2	26,2	31,8	23,6	18,1	100,3	0,6	81,6	18,1	4,5	0,2	136	166	1,2	0,9	st toniger U	Tonschluff	U
	17/3	Btv2	25-35	0	0	0	3,7	26,4	37,4	21,0	11,7	100,2	3,7	84,8	11,7	7,2	0,1	22,9	26,1	1,4	0,8	mi toniger U	Lehmschluff	U
	17/4	TII	35-28	2	0,0	0,0	0,0	13,8	28,1	18,3	39,8	100,0	0,0	60,2	39,8	1,5	0,7	1.0	1.1	2,0	1,3	mi schluffiger T	Schlufflon	T
	17/5	Cn	>38	Fels	0	8,3	3,7	0	23,6	35,9	28,5	100,0	12,0	59,5	39,8	1,5	0,7	5,0	8,3	14	- 6	schluffiger L	Lehmschluff	U
P18/ZP	18/1	Ah	0-8	1	1,2	2,3	3,3	28,1	20,9	19,1	25,6	100,5	6,8	68,1	25,6	2,7	0,4	10,0	13,8	0,7	0,7	st loniger U	Tonschluff	U
1.10	18/2	llBvt	8-20	0	0	0	Ö	3,2	18,5	36,4	41,8	99,9	0,0	58,1	41,8	1,4	0,7	,		5,8	11,4	mi schluffiger T	Schluffton	T
P19/ZP	19/1	Bv	0-15	1	0,0	0,0	0,0	18,1	36,7	21,1	24,0	99,9	0,0	75,9	24,0	3,2	0,3			2,0	1,2	st toniger U	Tonschluff	U
1000	19/2	liCv	>15	Fels	0,0	6,3	4,2	0,0	22,5	36,2	32,1	101,3	10,5	58,7	24,0	2,4	0,4			~ ~		schluffiger L	Lehmschluff	U
P20/ZP	20/1	Bv	0-13	-	0	0	0	15,7	28,1	21,1	35,1	100,0	0,0	64,9	35,1	1,8	0,5			1,8	1,3	mi schluffiger T	Schluffton	T
P21/ZP	21/1	llBv	0-20	0	0	5,7	4,4	16,2	32,0	25,0	16,8	100,0	10,1	73,1	16,8	4,4	0,2	7,2	8,9	2,0	1,5	mi toniger U	Lehmschluff	U
	1									Rei	fe Pols	sterrend	zina /1	Terra f	usca-	Rend	zina				_			
P29/ZP	29/1	Oh	0-17	- 4	3,2	4,1	7,9	19,1	29,5	14,5	22,8	101,1	15,2	63,1	22,8	2,8	0,4	4,2	5,7	1,5	0,8	st toniger U	Tonschluff	U
1	29/2	Oh+T	17-20	0	0,8	0,9	5,4	5,1	20,6	16,3	50,9	100,0	7,1	42,0	50,9	0,8	1,2	5,9	13,1	4,0	3,2	sw schluffiger T	Lehmton	T
	29/3	T	20-21	0	0	0	0	8,5	10,5	22,7	57,3	99,0	0,0	41,7	57,3	0,7	1,4		- 2	1,2	2,7	sw schluffiger T	Lehmton	T
	29/4	Cn	>21	Fels	0,0	6,9	4,2	0,0	23,0	37,0	29,1	100,2	11,1	60,0	57,3	1,0	1,0			1.		mi schluffiger T	Schlufton	T
P30/ZP	30/1	Oh+T	15-19	2	0,2	0,8	1,2	15	12,8	18,3	52,3	100,6	2,2	46,1	52,3	0,9	1,1	21,0	44,7	0,9	1,2	sw schluffiger T	Lehmton	T
	30/2	T	19-21	0	0	0	0	4,3	23,7	14,9	54,3	97,2	0,0	42,9	54,3	0,8	1,3			5,5	3,5	sw schluffiger T	Lehmton	T
P33/ZP	33/1	T	0-12	2	1,2	0,5	11,6	10,1	13,6	22,9	41,5	101,4	13,3	46,6	41,5	1,1	0,9	3,5	6,6	1,3	2,3	mi toniger L	Schluffion	T
P34/ZP	34/1	Bv	0-15	0	0	7.1	4,2	15,1	29,7	25,4	18,7	100,2	11,3	70,2	25,4	2,8	0,4	6,2	8,5	2,0	1,7	st toniger U	Tonschluff	U

Die Profile der organischen, rezent-beeinflußten Böden sind der Arbeit von HUTTL (1999) zu entnehmen

Mittlere Korngrößenverteilung [Gew.-%] - Böden

Karw	end	elgrube	/ Karv	vende	Igebi	irge				Daten a	als arith	nelisch	es Mit	tel (n=	4) dar	gesle	III							
P	roben	beschreibu	ng	Skelett [%]		,	Karngrö	ßen (Gew	/%] Fe	inbode	n.				Bod	lenphy	ysikal	ische In	dices			Charaktensierung ((sl = stark; sw = sc Schluff; T = Ton; S	der Bodenart bwach; mi = mitte = Sand; L = Lehr	el); U = m
Profil	Probe	Horizant	Tiefe [cm]	<2000µm	gS (2000-630µm)	mS (630-200µm)	fS (200-63µm)	gU (63-20µm)	mU (20-6,3µm)	6,3-2µm)	T <2µm	Summe	S [%]	[%] n	T [%]	ULT	T/U	Sin	N+T/S	nß/nw	nĝn	Bodenart	Bodenart- gruppe	Hauptgruppe
	-						Là	ößbraune	rden a	uf alpin	em Mu	schelka	alk mk	/Wes	stl. Ka	rwen	delgr	ube			-			
P1/KG B1	1/1 1/2 1/3 1/4	Aeh Bv Bv-IICv IImCv	0-8 8-45 45-85 >85	9,8 12,5 50 80	11,8 11,4 5,3	13,6 12,1 11,5 0	13,1 10 20,1	12,4 9 18,1 25.1	17,6 18,6 18,9 21,7	16,8 20,5 3,9 24.7	14,7 18,4 22,1 28,5	100,0 100,0 99,9 100,0	38,5 33,5 36,9 0.0	46,8 48,1 40,9 71,5	15 18 22 29	3,2 2,6 1,9 2,5	0,3 0,4 0,5 0,4	1,2 1,4 1,1	1,6 2,0 1,7	1,4 2,1 1,0	1,4 2,3 0,2	schluffig-lehm.S sw sandiger L mi schluffiger S	Schlufflehm typ. L typ. L Schluffsand	LLLS
P9/KG	2/1	AhBy	0-8	4.5	14.6	14.7	12.4	9.3	18.1	17.1	13.9	100.1	41.7	44.5	14	3.2	0.3	1.1	1.4	1.9	1.8	schluffig-lehm.S	Sandlehm	Ť
B2	2/2 2/3 2/4	Bv Bv+IICv II ICv	8-46 46-50 >50	1,5 55 86	10,1 15,1 0	11,1 28,1 0	13,2 21,1 0	11,9 15,2 0,8	14,9 7,6 27,7	19,8 6,8 36,1	18,9 6,1 35,4	99,9 100,0 100,0	34 64,3 0,0	46,6 29,6 64,6	19 6,1 35	2,5 4,9 1,8	0,4 0,2 0,5	1,4 0,5	1,9 0,6	1,3 0,5 34,6	1.7 0,4 45,1	sw sandiger L mi schluffiger S mi schluffiger T	typ. L Schluffsand Schluffton	L S T
P11/KG	3/1	Bv1	0-23	7,7	10,0	10,3	13,3	13,8	15,1	23,1	14,4	100,0	33,6	52,0	14,4	3,6	0,3	1,5	2,0	1,1	1,7	sandig-lehm. U	Lehmschluff	U
B3	3/2 3/3	Bv2 II mCv	23-50 >50	9,9 mk	7,5	12,2	10,2	14,8 1,0	17,8 27,0	21,2 39,0	16,3 33,0	100,0	29,9 0,0	53,8 67,0	16,3 33,0	3,3 2,0	0,3 0,5	1,8	2,3	1,2 27,0	1.4	sandig-lehm. U st schluffiger T	Lehmschluff Schluffton	U T
P13/KG	4/1 4/2	AhBv Bv	0-8 8-45	1 2	5,8 2,3	12,3	23,8 18	18,1 14,7	19,8 17,1	12,1 19,6	7,9	99,8 100,0	42 29	50 51,4	7,9	6,3 2,7	0,2	1,2 1,8	1,4 2,4	1,1	0,7	st schluffiger S schluffiger L	Schluffsand Tonschluff	S U
	4/3	II MGV	>45	35	0	0	Terra	10,4 fueno-De	21,0	29,9	Z/,1	100,0	chicht	12,9	21 I Det	Z./	U,4	alaruh		1,8	1,9	ist schluniger t	Schunton	
P5/ÖKG	[5/1	TByh	0-80	1 01	0.0	1.7	5.2	9.4	24	30.6	29.1	100.0	6.9	64.0	29.1	2.2	0.5	93	13.5	2.6	3.3	schluffiger L	Tonschluff	U
B6	5/2	(Bv)-TCv	80-90 >90	75	1	4,2	7,6	6,2 9,8	21,1	25,4	34,5	100,0	12,8	52,7 72,5	34,5	1,5	0,7	4,1	6,8	3,4	4,1	mi schluffiger T	Schluffton Schluffton	Ť
P6/OKG	6/1	Bvh	0-5	11,2	0	1,6	4,1	11,9	25	29	28,4	100,0	5,7	65,9	28	2,3	0,4	11,6	16,5	2,1	2,4	st schluffiger T	Schluffton	T
B7	6/2	Bv+T	5-38	7,6	0	1	3	9,1	25,8	29,8	31,4	100,1	4,0	64,7	31	2,1	0,5	16,2	24,0	2,8	3,3	st schluffiger T	Schluffton	T
DTISUCO	6/3	mCv (LR)	>38	5	0	0	0	6,7	30,1	34,9	28,4	100,1	0,0	71,7	28	2,5	0,4	-	10	4,5	5,2		T 11 8	
PHOKG	7/2	T	0-5	51,2	19	0	3.7	6.5	22,1	32 3	33.3	100,2	12,1	60,2	23	2,8	0,4	5,4 9.1	14.2	1,8	2,6	ist toniger U mi schluffiger T	Schlufton	T
	7/3	mCv (LR)	32-40	rh	0	0	0	1,7	30	37,8	30,6	100,1	0,0	69,5	31	2,3	0,4	24		17,6	22,2	st schluffiger T	Schlufton	T

Mittlere Korngrößenverteilung [Gew.-%] - Böden

Allochthone Böden (Braunerden, Pseudogley-BR., Podsol)

Reiter	alpe / Ber	chtes	gaden	er Al	реп		~ ~		Daten a	ils arit	metisc	hes M	ittel (n	=4) da	rgeslé	alit	-						
Pre	benbeschreibu	ng	Skelett [%]		-10	orngroß	len (Gew	(%) Fe	mboden					Bod	enphy	sikalis	iche Inc	lices			Charakterisio/ung (st = stark: sw = sc Schluff: T = Ton; S	der Bodenart thwach: mi = mittei i = Sand: L = Lehm	1): L) = n
Profil	Probe Horizon	Tiefe (cm)	<2000µm	gS- (2000-630µm)	mS (630-200µm)	fS (200-63µm)	gU (63-20µm)	mU (20-6.3µm)	fU (6,3-2µm)	T <2µm	Summe	S [%]	[%] N	T [%]	UT	TIU	NIS	S/L+O	ugum	nő/n	Bodenart	Bodenart- gruppe	Hauplgruppe
P4/RA	4/0 Ah 4/1 Bt 4/2 Bt(T) 4/3 Cv	0-2 2-25 25-28 >28	Fels	0,0 0,0 0,0 0	7,9 1,0 1,0 0	6,5 41,3 21,5 0	12,8 18,3 21,4 0,1	29,2 17,0 24,7 28,6	25,4 12,3 17,9 39,2	18,3 9,5 13,3 32,1	100,1 99,4 99,8 100	14,4 42,3 22,5 0,0	67,4 47,6 64,0 67,9	18,3 9,5 13,3 32,1	3,7 5,0 4,8 2,1	0,3 0,2 0,2 0,5	5 1,1 2,8	6 1,3 3,4	2,3 0,9 1,2 286	2,0 0,7 0,8 392	st toniger U schluff -lehm. S sand,-lehm. U st schluffiger T	Tenschluff Sandlehm Lehmschluff Schluffton	ULUT
P6/RA	6/1 Ahe 6/2 Bv-(Sw) 6/3 Bv-(Sd) 6/4 Cv	0-7 7-40 40-50 >50	Fels	0,6 0,0 9,3 0,0	3,5 0,0 0,0 0,0	22,1 2,8 2,3 0,0	25,2 31,5 24,7 0,0	27,5 30,3 30,8 22,1	9,2 18,2 18,8 42,5	11,9 17,5 14,1 35,4	100,0 100,3 100,0 100,0	26,2 2,8 11,6 0,0	61,9 80,0 74,3 64,6	11,9 17,5 14,1 35,4	5,2 4,6 5,3 1,8	0,2 0,2 0,2 0,5	2,4 28,5 6,4	2,8 34,7 7,6	1,1 1,0 1,2	0,4 0,6 0,8	sandlehm. U mi toniger L mi toniger U st schluffiger T	Lehmschluff Lehmschluff Lehmschluff Schluffton	UUUT
P14/RA	14/1 AhBy 14/2 mCy	0-15 >15	Fels	0	1	8 5.7	26,8	32,1 29	19,4 30	13 21.8	100,3	9,0 19,2	78,3	13	6,0 2,7	0,2	8,7 3,1	10,1	1,2	0,7	mi toniger U schluffiger L	Lehmschluff	UU
P15/RA	15/1 Ah+Bv 15/2 By 15/3 By2	0-5 5-100	Fels	0,2 0 30,2	3,35 1,25 0,95	17,3 9,05 5,85	31,85 29,1 22	25,3 32,05 23,25	13,46 17,55 11,575	8,49 11,0 6,18	100,0 100,0 100,0	20,9 10,3 37,0	70,6 78,7 56,8	8,49 11 6,18	8,3 7,2 9,2	0,1 0,1 0,1	3,4 7,6 1,5	3,8 8,7 1,7	0,8 1,1 1,1	0,4 0,6 0,5	sandiger U sw toniger U sandiger U	Sandschluff Lehmschluff Sandschluff	UUU
P17/RA	17/1 Ah 17/2 Bsv 17/3 Sw 17/4 II Sd 17/5 II BvCv	0-5 9-5 9-16 16-38 38-58	Moräne	0 0 0 18,2	5,3 0 1,2 2,1 10,1	10,7 4,7 5,1 13,8 22,3	30,1 25,5 30,1 25,1 14,3	27,6 34,1 34,6 32,1 18,2	15 17,6 17,3 16,7 10,2	11.3 18,1 11,7 10,2 6,7	100,0 100,0 100,0 100,0 100,0	16,0 4,7 6,3 15,9 50,6	72,7 77,2 82,0 73,9 42,7	6,9 18,1 11,7 10,2 6,7	10,5 4,3 7,0 7,2 6,4	0,1 0,2 0,1 0,1 0,2	4,5 16,4 13,0 4,6 0,8	5,0 20,3 14,9 5,3 1,0	0,9 1,3 1,1 1,3 1,3	0,5 0,7 0,6 0,7 0,7	stark toniger U mi toniger U sw toniger U st u S	Tonschluff Lehmschluff Lehmschluff Schluffsand	UUUUS

Mittlere Korngrößenverteilung [Gew.-%] - Böden

L.

Autochthone Böden (Terrae calcis, Braunerden)

Nr. 4

Reiter	ralpe / Bei	rchtes	gaden	er Al	pen				Datena	is anti	hmetisc	thes M	ittel (n	=4) da	irgeste	silt	_	_	_	_			_
Pro	benbeschreib	nuð	Skelett [%]		K	orngröß	Sen (Gew	7%] Fe	inboden					Bod	enphy	sikalis	che In	lices			Charaktenskerung de (ul * slark: tw/ = scrw Schuilt, T = Ton, S =	r Boderwrl wiich: mi = millief): V Sanit, L = Lefim	e
Profil	Probe Horzont	Tiefê (cm)	<2000µm	gS (2000-630µm)	mS (630-200µm)	fS (200-63µm)	gU (63-20µm)	mU (20-6,3µm)	fU (6,3-2µm)	T <2µm	Summe	S [%]	[%] N	T [%]	Ur	110	SIN	S/L+N	nß/nw	nām).	Bodenart	Bodenart- gruppe	Hauptgruppe
P1/RA	1/1 Bt	0-14	0	0,0	0,0	3,8	17,6	27,3	28,7	22,7	100,1	3,8	73,6	22,7	3,2	0,3	19,5	25,5	1,6	1,6	st schluffiger T	Tonschluff	U
	1/2 Cv	>14	Fels	0	24,5	16,5	7,1	18,3	18,8	14,6	99,8	41,0	44,2	14,6	3,0	0,3	1,1	1,4	2,6	2,6	st lehmiger S	Sandlehm	1
P2/RA	2/1 BI	0-15	0	1,8	12,9	23,6	16,9	15,7	10,4	18,7	100,0	38,3	43,0	18,7	2,3	0,4	1,1	1,6	0,9	0,6	sw sandiger U	typ. Lehm	L
	2/2 Cv	>15	Fels	0,0	9,3	6,6	6,0	17,1	28,0	33,0	100,0	15,9	51,1	33,0	1,5	0,6	3,2	5,3	2,9	4,7	ml schluffiger T	Schluffton	T
P3/RA	3/1 BI	0-15	1	5,3	1,9	5.7	35,2	12,6	17,5	21,6	99,8	12,9	65,3	21,6	3,0	0,3	5,1	6,7	0,4	0,5	st.toniger U	Tonschluff	U
	3/2 Cv	>15	Fels	0,0	0,0	0,2	4,5	27,0	36,0	32,3	100,0	0,2	67,5	32,3	2,1	0,5	338	499	6,0	8,0	st schluffiger T	Schluffton	T
P5/RA	5/1 Bvh	0-20	0	0,5	0,0	4,8	29,0	18,5	11,9	35,2	99,9	5,3	59,4	35,2	1,7	0,6	11,2	17,8	0,6	0,4	mi schluffiger T	Schluffton	T
	5/2 Cv	>20	Fels	0,0	1,9	1,0	0,0	25,6	39,8	32,6	100,9	2,9	65,4	32,6	2,0	0,5	22,6	33,8			mi schluffiger T	Schluffton	T
P7/RA	7/0 Ah	0-2	0,5	0,0	0,0	2,9	11,0	23,1	21,0	41,5	99,5	2,9	55,1	41,5	1,3	0,8	19,0	33,3	2,1	1,9	mi schluffiger T	Schluffton	T
	7/1 T	2-30	0	0,0	0,1	4,4	10,9	14,0	22,8	47.8	100,0	4,5	47,7	47,8	1,0	1,0	10,6	21,2	1,3	2,1	sw schluffiger T	Lehmton	T
	7/2 TCv	30-50	20	0,0	0,6	1,4	11,1	32,3	19,2	35,2	99,8	2,0	62,6	35,2	1,8	0,6	31,3	48,9	2,9	1.7	mi schluffiger T	Schluffton	T
_	7/3 Cv	>50	Schutt	0,0	20,1	11,7	0,0	21,7	26,1	20,4	100,0	31,8	47,8	20,4	2,3	0,4	1,5	2,1	- 9		sw sandiger L	typ. Lehm	L
P8/RA	8/1 Oh	0-3	0	0,3	1,3	32,8	29,3	20,0	8,8	7,3	99,8	34,4	58,1	7,3	8,0	0,1	1,7	1,9	0,7	0,3	sandiger U	Sandschluff	U
1.1	8/2 Bv	3-17	0,5	0	1,0	9,8	18,1	34	14	23,7	101	10,8	66,1	23,7	2,8	0,4	6,1	8,3	1,9	0,8	st toniger U	Tonschluff	U
	8/3 GV	>17	Fels	0,0	0,0	0,0	0,0	25,1	40,2	33,7	100,0	0,0	66,3	33,7	2,0	0,5	*				st schluffiger T	Schluffton	T
P9/RA	9/1 Ahe	0-7	0	1,9	2,4	34.5	20,4	18,9	3,4	18,3	99,8	38,8	42,7	18,3	2,3	0,4	1,4	1,6	0,9	0,2	schluffiger L	Tonschluff	U
11111	9/2 Bsh	7-10	0	0,7	0,8	16,7	17,1	27,8	12,6	24,4	100,1	18,2	57,5	24,4	2,4	0,4	3,2	4,5	1,6	0,7	schluffiger L	Tonschluff	U
S	9/3 By	10-25	0	0,0	0,0	7,2	18,5	28,4	19,5	26,2	99,8	7,2	66,4	26,2	2,5	0,4	9,2	12,9	1,5	1,1	st toniger U	Tonschluff	U
	9/4 BI (T)	25-30	0,6	0,0	0,0	0,0	10,4	30,4	31,6	27,4	99,8	0,0	72,4	27,4	2,6	0,4			2,9	3,0	st schluffiger T	Schluffton	T
	9/5 CV	30-45	Fels	0	0	0	14	19,8	30,7	35,4	99,9	0,0	64,5	35,4	1,8	0,5			1,4	2,2	m schluffiger T	Schluffton	T
P10/RA.	10/1 Bv1	0-16	0	1,5	2,3	44,9	21,7	13,6	4,3	11.7	100,0	48,7	39,6	11.7	3,4	0,3	0,8	1,1	0,6	0,2	mi toniger S	Sandlehm	L
	10/2 Bv2	16-34	0	0,0	0,8	9,1	20,9	28,5	20,8	19,8	99,9	80,1	70,2	19,8	3,5	0,3	0,9	-1.1	1,4	1,0	st loniger U	Tonschluff	U.
	10/3 Bv3	34-55	6,8	1,5	1,7	4,3	10	26,5	26,2	31	101,2	7,5	62,7	31	2,0	0,5	8,4	12,5	2,7	2,6	mi schluffiger T	Schluffton	T
	10/4 Cv	>55	Fels	0,0	0,0	0,0	0,0	27,9	40,2	31,8	99,9	0,0	68,1	31,8	2,1	0,5			~		st schluffiger T	Schluffton	T
P11/RA	11/1 Ah	0-5	0	Q	0	17,7	40,4	20,8	12,3	8,8	100,0	17,7	73,5	8,8	8,4	0,1	4,2	4,6	0,5	0,3	sw toniger U	Lehmschluff	U
	11/2 BI(T)	5-15	0	0	20	23,6	13,4	13,4	11,9	17,6	99,9	43,6	38,7	17,6	2,2	0,5	0,9	1,3	1,0	0,9	mi sandiger L	typ. Lehm	L
1	11/3 Cv	>15	Fels	0,0	0,0	0,2	4,5	27,0	36,0	32,3	100,0	0,2	67,5	32,3	2,1	0,5	338	499	6,0	8,0	st schluffiger T	Schluffton	T

Mittlere Korngrößenverteilung [Gew.-%] - Böden

Autochthone Böden (Terrae calcis, Braunerden)

Nr. 5

Reiter	alpe	e / Bei	chtes	gaden	er Al	pen				Daten a	ls arill	nmelisc	hes M	ittel (m	=4) da	rgeste	elát							
Pro	benbi	eschreib	ung	Skelett [%]		к	omgräß	Sen (Gew	%] Fel	nbodén					Bod	enphy	sikalis	che Inc	lices			Charaktensierung di (al = slark, sw = ach Schlull; T = Ton: S =	er Bodenart wach: mi = mitte = Sand; L = Lehn	/); U = n
Profil	Probe	Horizont	Tiefe [cm]	<2000µm	gS (2000-630µm)	mS (630-200µm)	fS (200-63µm)	gU (63-20µm)	mU (20-6,3µm)	FU (6.3-2µm)	T <2µm	Summe	S [%]	1%] N	T [%]	ULT	T/U	SIN	C+T/S	nBinw	Ugu	Bodenart	Bodenart- gruppe	Hauplgruppe
P12/RA	12/1	Ah	0-5	0	0	0	15,5	37,7	23,5	13,9	9,38	100,0	15,5	75,1	9,4	8,0	0,1	4,8	5,5	0,6	0,4	sw toniger U	Lehmschluff	U
- C.X.	12/2	Bt(T)	5-30	0	1	1	11,3	23,4	26,3	15	22,0	100,0	13,3	64.7	22,0	2,9	0,3	4,9	6,5	1,1	0,6	st toniger U	Tonschluff	U
	12/3	TCv	>30	Fels	1	1	12,7	16	26,1	18	25,2	100,0	14,7	60,1	25,2	2,4	0,4	4,1	5,8	1,6	1,1	schluffiger L	Tonschluff	U
P13/RA	13/1	Ah	0-8	0	0	0	1	14,1	41,6	33,9	9,6	100,2	1.0	89,6	9,6	9,3	0,1	89,6	99,2	3,0	2,4	sw toniger U	Lehmschluff	U
	13/2	Bt1	B-18	0	0	1	5,8	18,2	25,7	21,9	27,4	100,0	6,8	65,8	27,4	2,4	0,4	9,7	13,7	1,41	1,2	st schluffiger T	Schluffton	T
	13/3	Bt(Sd)	18-45	0	3,3	3,1	11,2	14,4	19,3	16	32,8	100,1	17,6	49,7	32,8	1,5	0,7	2,8	4,7	1,3	1,1	mi schluffiger T	Schluffton.	T
	13/4	CV	>45	Fels	0	1,5	16,9	15,1	23,1	23,1	20,6	100,3	18,4	61,3	20,6	3,0	0,3	3,3	4,5	1,5	1.5	schluffiger L	Schlufton	T
P16/RA	16/1	Ah	0-5	0	0	3,4	17,3	32	25,3	13,46	8,5	100,0	20,7	70,8	8,5	8,3	0,1	3,4	3,8	8,0	0,4	sandiger U	Sandschluff	U
1000	16/2	BII	5-13	0	0	4,0	35,5	13,8	16,8	16,3	13,7	100,0	39,4	46,9	13,6	3,5	0,3	1,2	1,5	1,2	1,2	schluffig-lehmiger	Sandlehm	1
	16/3	812	12.25	Fale	n	12	245	110	17.8	17.0	14.5	100.0	28.0	46.7	14.5	32	03	1 2	16	15	1.4	echluffia labmigar	Sandlahm	

10.4 Korngrößendaten - Staub

Mittlere Korngrößenverteilung [Vol.-%] - Staub von Schneeflächen (Horizonttiefe: 0cm-1cm)

Zugsp	itzplatt / Wetter	stein	gebirg	ge						Daten	als an	Ihmel	sches	Mittel	(n=4) (dargest	alli				_
Pro	benbeschreibung		1	Korngröl	ßen [Val.	-%] Feint	ooden					Bod	enphys	ikalist	the Ind	lices			Charakterisierung d (st = stark, sw = sch U = Schluff: T = Tor	er Bodenart wach; mi = mittel) n; S = Sand; L = Li	ehm
Profil	Probe	gS (2000-630µm)	mS (630-200µm)	fS (200-63µm)	gU (63-20µm)	mU (20-6,3µm)	fU (6,3-2µm)	T <2µm	Summe	S [%]	[%] N	T [%]	Π	TAU	SIN	S/L+U	nĝ/n	fugu	Bodenart	Bodenart- gruppe	Hauptgruppe
29.10.01	P1+P2	0	1	9,5	43,5	32,3	11,3	2,4	100,0	10,5	87,1	2,4	36,3	0,0	8,3	87,3	0,7	0,3	reiner U	typ. U	U
	P1+P2+P3	0	0,8	4,5	38,6	27,9	23,1	5,1	100,0	5,3	89,6	5,1	17,6	0,1	16,9	90,6	0,7	0,6	reiner U	typ. U	U
31.05.02	P1	0	13,6	- 11,1	21,4	26,9	16,4	10,6	100,0	24,7	64,7	10,6	6,1	0,2	2,6	65,1	1,3	0,8	sw toniger U	Lehmschluff	U
1.00	P2	0	15,9	14,1	19,7	25,4	15	9,9	100,0	30,0	60,1	9,9	6,1	0,2	2,0	60,4	1,3	0,8	sandig-lehmiger U	Lehmschluff	U
	P3	0	11,3	9,9	21,9	28,2	17.4	11,3	100,0	21,2	67,5	11,3	6,0	0,2	3,2	68,0	1,3	0,8	sw toniger U	Lehmschluff	U
	SP, 2225m	0,0	0,0	7,9	22,4	31,7	22,8	15,2	100,0	7,9	76,9	15,2	5,1	0,2	9,7	78,8	1,4	1,0	mi toniger U	Lehmschluff	U
	SP2	0,0	0,0	5,7	24,0	32,8	22,2	15,3	100,0	5,7	79,0	15,3	5,2	0,2	13,9	81,7	1,4	0,9	mi toniger U	Lehmschluff	U
	SP1	0,0	0,0	6,8	23,2	32,3	22,5	15,3	100,0	6,8	78,0	15,3	5,1	0,2	11,5	80,2	1,4	1,0	mi toniger U	Lehmschluff	U
31.07.02	SS1_2350m, gr.Seife	0,0	1,0	36,2	50,2	11,1	0,8	0,6	99,9	37,2	62,1	0,6	104	0,0	1,7	62,1	0,2	0,0	sandiger U	Sandschluff	U
1.2	P3	0	0	6,8	23,2	32,25	22,5	15,3	100	6,8	78,0	15,3	5,1	0,2	11,5	80,2	1,4	1,0	mi toniger U	Lehmschluff	U
03.01.03	P1+P2+P3	0	0	6,8	39,1	25,9	17,5	10,7	100,0	6,8	82,5	10,7	7,7	0,1	12,1	84,1	0,7	0,4	sw toniger U	Lehmschluff	U
11.05.03	P1+P2	0	0	4,5	25	37	20,5	13	100,0	4,5	82,5	13,0	6,3	0,2	18,3	85,4	1,5	0,8	mi toniger U	Lehmschluff	U

Mittlere Korngrößenverteilung [Vol.-%] - Staub von Schneeflächen (Horizonttiefe: 0cm-1cm)

Nr. 7

Karwei	ndelgrube / Ka	rwend	lelgebi	irge						Dalen	als an	thmel	ische	s Mitt	el (n=4)	darges	tellt				
Prob	enbeschreibung			Korngröß	en (Vol%	6] Feinbo	den					Bode	mphy	sikalis	iche (n	dices		1	Charakterisierung o (st = stark: sw = sch U = Schluff; T = Tor	ler Bodenart twach: mi = mit n: S = Sand; L =	ttel) = Lehm
Profil	Prabe	gS (2000-630µm)	mS (630-200µm)	fS (200-63µm)	gU (63-20µm)	mU (20-6,3µm)	fU (6,3-2μm)	T <2µm	Summe	S [%]	[%] N	T [%]	UIT	TAU	SIN	N+T/S	mu/gu	fulgu	Bodenart	Bodenart- gruppe	Hauptgruppe
17.05.02	P1/Doline	1	5,8	13,5	25,6	23,8	16,6	13,7	100	20,3	66,0	13,7	4,8	0,2	3,3	66,7	0,9	0,6	mi toniger U	Lehmschluff	U
	P2/Luv	1.4	11,4	17	23,8	19,9	14.3	12.2	100	29,8	58,0	12,2	4.8	0,2	1,9	58,4	0,8	0,6	sandig-lehmiger U	Lehmschluff	U
	P3/Lee	2,7	9,9	10,2	24,3	25,7	15	12,2	100	22,8	65,0	12,2	5,3	0,2	2,9	65,5	1,1	0,6	sandig-lehmiger U	Lehmschluff	- 0 -
26.10.02	P2/Luv	0,0	0,0	5,0	21,1	32,3	23,5	18,1	100	5,0	76,9	18,1	4,2	0,2	15,4	80,5	1,5	1,1	stark toniger U	Tonschluff	U
1.000	P3/Lee	0,0	0,0	0,0	24,5	33,6	24,1	17,8	100	0,0	82,2	17,8	4,6	0,2			1,4	1,0	stark toniger U	Tonschluff	U
03.01.03	P1/Doline	0,0	0,0	1,3	35,2	33,4	18,0	12,1	100	1,3	86,6	12,1	7,2	0,1	66,6	95,9	0,9	0,5	sw toniger U	Lehmschluff	U
1.0	P2/Luv	0,4	2,7	18,3	31,9	23,8	13,7	9,2	100	21,4	69,4	9,2	7,5	0,1	3,2	69,8	0,7	0,4	sandig-lehmiger U	Lehmschluff	u
	P3/Lee	0,0	0,0	5,4	11,2	22,7	30,7	30,0	100	5,4	64,6	30,0	2,2	0,5	12,0	70,2	2,0	2,7	schluffiger L	Tonschluff	U
07.05.03	P1/Doline	1,0	1,1	11,0	28,7	30,0	17,2	11,0	100	13,1	75,9	11,0	6,9	0,1	5,8	76,7	1,0	0,6	sw toniger U	Lehmschluff	U
1.1.1.1.1	P2/Luv	2,0	12,3	13,6	22,8	25,5	14,4	9,4	100	27,9	62,7	9,4	6,7	0,1	2,2	63,0	1,1	0,6	sandig-lehmiger U	Lehmschluff	U
	P3/Lee	1,7	9,1	11,0	19,4	27.0	18,7	13,1	100	21,8	65,1	13,1	5,0	0,2	3,0	65,7	1,4	1,0	sandig-lehmiger U	Lehmschluff	U
30.05.03	P1/Doline	0,0	0,0	5,6	22,7	32,9	23,2	15,6	100	5,6	78,8	15,6	5,1	0,2	14,1	81,6	1,4	1,0	mi toniger U	Lehmschluff	U
1.1	P3/Lee, Linder	0,3	2,4	16,3	29,6	24,0	15,9	11,5	100	19,0	69,5	11,5	6,0	0,2	3,7	70,1	0,8	0,5	sw toniger U	Lehmschluff	U
	P3/Lee Sammelpr.	1,3	12,7	22,5	20,6	18,9	13,9	10,1	100	36,5	53,4	10,1	5,3	0,2	1,5	53,7	0,9	0,7	sandig-lehmiger U	Lehmschluff	U
20.06.03	Totalisator Doline	0,3	10,0	12,1	12,0	14,7	23,0	28,1	100	22,4	49.7	28,1	1,8	0,6	2,2	51,0	1,2	1,9	schluffiger L	Tonschluff	U

Mittlere Korngrößenverteilung [Vol.-%] - Staub von Schneeflächen (Horizonttiefe: 0cm-1cm)

Reiteralp	e / Berchte	sgade	ener	Alp	en				1	Dater	als ari	Inmetisc	hes M	ittel (r	1=4) da	argeste	elli				
Probenb	eschreibung			Kom	próßen	[Vol%]	einboder	1				Boder	physik	alisc	ne Indi	ces			Charakterisierung d (st = stark; sw = sch U = Schluff; T = Tor	ler Bodenart 1wach; mi = mitte n; S = Sand; L = I	i) Lehm
Profil	Probe	gS (2000-630µm)	Sm Manufor (199)	(induction)	(mutco-una)	(63-20µm) mU	(6.3-2um)	T <2µm	Summe	S [%]	[%] N	T [%]	U/T	T/U	NIS	S/L+N	ng/um	Ng/N	Bodenart	Bodenart- gruppe	Hauptgruppe
23.10.02	P1+P2	0	1,	5 7,	7 2	5,4 35	,2 19,5	5 10,7	100	9,2	80,1	10,7	7,5	0,1	8,7	81,3	1,4	0,8	sw toniger U	Lehmschluff	U
	P4_Hütte	0		1 4,	1 3	9,3 28	,7 22,1	4,8	100	5,1	90,1	4,8	18,8	0,1	17,7	91,0	0,7	0,6	reiner U	typ. Schluff	U
11.05.02	P1_1700m	0) 2,	1 16,	5 3),2 26	4 14,8	10,1	100	18,6	71,5	10,1	7,1	0,1	3,8	72,0	0,9	0,5	sw toniger U	Lehmschluff	U
	P2_1734m	0	5,	6 17,	8 2	5,5 24	.7 15,1	10,6	100	23,4	66,3	10,6	6,3	0,2	2,8	66,8	0,9	0,6	sw toniger U	Lehmschluff	U
	P3_1545m	0	(-)	0 2,	4 1	3,8 37	8 27,3	3 18,7	100	2,4	78,9	18,7	4,2	0,2	32,9	86,7	2,7	2,0	st toniger U	Tanschluff	U
11.12.02	P1+P2	0	1	0	0 1	5,3 48	,7 29,3	6,7	100	0	93,3	6,7	13,9	0,1	-	÷	3,2	1,9	reiner U	typ. Schluff	U
05.02.03	P1+P2+P3	0) (0 6,	3 4	5,6 15	8 22,3	3 10	100	6,3	83,7	10	8,4	0,1	13,3	85,3	0,3	0,5	sw toniger U	Lehmschluff	U
07.05.03	P1_1700m	0	6,	3 14,	3 1	3,1 28	5 27,3	5,6	100	20,6	73,9	5,6	13,2	0,1	3,6	74,2	1,6	1,5	sandiger U	Sandschluff	U
	P2_1734m	0		0	0 3	3,4 35	,2 18,8	12,6	100	0	87,4	12,6	6,9	0,1			1,1	0,6	mi toniger U	Lehmschluff	U
	P3_1545m	0	4.	8 18,	8 2	3,6 24	7 14,8	3 10,3	100	23,6	66,1	10,3	6,4	0,2	¥	×	0,9	0,6	sandig-lehmiger U	Lehmschluff	U
	P4 Hütte	0	r	0	3 3	10 35	4 180	12	100	3	85.2	12	71	01	28.4	80.2	11	0.6	sw toningr 11	Lehmschluff	11

Mittlere Korngrößenverteilung [Vol.-%] von Staub aus Regenniederschlag (Auswahl)

	4.	ы.	- 1	۰.
- 8	и.	г.	- 2	ч.
				•

Karwer	delgrube / Ka	rwend	leigeb	irge						Daten	als ari	Ihmel	lisches	Mitte	al (n=4) darge	stellt			
Probe	enbeschreibung		К	orngrößer	n (Gew9	%] Feinbo	den				B	Boden	physik	alisch	ne Indi	ces		Charakterisierung d (st = slark; sw = sch U = Schluff; T = Tor	er Bodenart wach; mi = mitte i; S = Sand; L =	i) Lehm
Profil	Probe	gS (2000-630µm)	mS (630-200µm)	fS (200-63µm)	gU (63-20µm)	mU (20-6,3µm)	fU (6,3-2µm)	T <2µm	Summe	S [%]	[%] N	T [%]	ULT	TN	SIN	U+T/S	mu/gu	Bodenart	Bodenart- gruppe	Hauplgruppe
30.05.03	Kan1/Luv/30.05.03	0	4,5	14,3	48,1	17	9,5	6,6	100	18,8	74,6	6,6	11,3	0,1	4,0	75,0	0,4 (2 sandiger Schluff	Sandschluff	U
	K1/Luv 30.5.03	0	4,4	18,5	26,8	23,9	15,7	10,7	100	22,9	66,4	11	6,2	0,2	2,9	66,9	0,9 (6 sw toniger U	Lehmschluff	U
	K3/Lee 30.05.03	0	0	2,4	13,8	37,8	27,3	18,7	100	2,4	78,9	19	4,2	0,2	32,9	86,7	2,7 1	,0 mi toniger U	Lehmschluff	U
14.06.03	K1/Luy	0,4	5,4	15,8	19,7	23,5	19,5	15,7	100	21,6	62,7	16	4,0	0,3	2,9	63,4	1,2	,0 sandig-lehmiger U	Lehmschluff	U
	E1/Luv/14.6.03	0	7,6	8,2	19,5	27,9	20,7	16,1	100	15,8	68,1	16	4,2	0,2	4,3	69,1	1,4 1	,1 mi toniger U	Lehmschluff	U
	E3/Lee	1,2	9,7	14,8	22,2	23,5	16,5	12,1	100	25,7	62,2	12	5,1	0,2	2,4	62,7	1,1 (7 sandig-lehmiger U	Lehmschluff	U
	K3/Lee	2	9	8	19,7	29,8	18,8	12,7	100	19	68,3	13	5,4	0,2	3,6	69,0	1,5 1	0 mi toniger U	Lehmschlulf	U
	K4/Linder Lee	3,7	19,2	11	12,4	17,8	19,4	16,5	100	33,9	49,6	17	3,0	0,3	1,5	50,1	1,4 1	6 schluffig-lehmiger S	Sandlehm	L
	K5/Lee	2,9	14,3	12,3	16	21,9	18,6	14	100	29,5	56,5	14	4,0	0,2	1,9	57,0	1,4 1	2 sandig-lehmiger U	Lehmschluff	U
20.06.03	E1/Luv/20.6.03	1,6	7,3	7	18,6	28,5	21,1	15,9	100	15,9	68,2	16	4,3	0,2	4,3	69,2	1,5	,1 mi toniger U	Lehmschluff	U
	K3/Lee 20.6.03	2,4	10,8	10,6	20,3	28,3	16,7	10,9	100	23,8	65,3	11	6,0	0,2	2,7	65,8	1,4 (8 sw toniger Schluff	Lehmschluff	U
	E3/Lee 20.6.03	0	0	1,1	13,5	35,6	28,8	21	100	1,1	77,9	21	3,7	0,3	70,8	97,0	2,6 1	,1 st toniger U	Tonschluff	U
	K4/Linder Lee	- 1	7,8	9,1	14,1	26,9	23,4	17,7	100	17,9	64,4	18	3,6	0,3	3,6	65,4	1,9	7 schluffiger Lehm	Tonschluff	U

Mittlere Korngrößenverteilung [Vol.-%] von Staub aus Regenniederschlag (Auswahl)

Nr. 10

Reiter	ralpe / Berg	chtes	gaden	er Alp	en					Daler	alsa	rithmet	lische	s Mitte	el (n=4	4) dan	jestel	llt			
Prober	nbeschreibung		×	Comgröße	en [Vol	%] Feinb	oden					Boden	physi	kalisci	he Ind	lices			Charakterisierung d (st = stark; sw = sch U = Schluff; T = Tor	er Bodenart wach; mi = mitte i; S = Sand; L = I	l) Lehm
Profil	Probe	gS (2000-630µm)	mS (630-200µm)	fS (200-63µm)	gU (63-20µm)	mU (20-6,3µm)	fU (6,3-2µm)	T <2µm	Summe	S [%]	[%] N	T [%]	ULT	T/U	SIN	S/L+N	mungu	Ugu	Bodenart	Bodenart- gruppe	Hauptgruppe
12.06.03	3 K1/1700m	0	8,9	18	24	24,7	14,6	9,8	100	27	63	9,8	6,5	0,2	2,4	63,7	1,0	0,6	sandig-lehmiger U	Lehmschluff	U
	E1/1700mm	1,2	13,2	15,2	17,6	24,1	17	11,7	100	30	59	11,7	5,0	0,2	2,0	59,1	1,4	1,0	sandig-lehmiger U	Lehmschluff	U
	K3/Nord	1	11,2	12,7	18,4	26,3	17,9	12,5	100	25	63	12,5	5,0	0,2	2,5	63,1	1,4	1,0	sandig-lehmiger U	Lehmschluff	U
	K4/Süd	0	5,3	29	23,9	20,8	12,8	8,2	100	34	58	8,2	7,0	0,1	1,7	57,7	0,9	0,5	sandig-lehmiger U	Lehmschluff	U
14.06.03	3 K1/Luv	0,4	5,4	15,8	19,7	23,5	19,5	15,9	100	22	63	15,9	3,9	0,3	2,9	63,4	1,2	1,0	sandig-lehmiger U	Lehmschluff	U
	E1/1700mm	2	6,9	14,8	26,9	28,9	12,1	8	99,6	24	68	8	8,5	0,1	2,9	68,2	1,1	0,4	sandig-lehmiger U	Lehmschluff	U
	E3/Lee	0	2	23,5	31,2	22,3	9,3	12,3	101	26	63	12,3	5,1	0,2	2,5	63,3	0,7	0,3	sandig-lehmiger U	Lehmschluff	U
	K4/Süd	0	0	18,9	17,2	23,6	12,8	27,3	99,8	73	54	27,3	2,0	0,5	0,7	54,0	1,4	0,7	st toniger U	Tonschluff	U

10.5 Analysedaten - Gestein / Residuen

Verhältnis	s von karbonatische	n und nichtka	bonatische	n Anteilen im	Gestein	[%]		-	Nr. 11
Erläuterunge	en:	mk = anisisch	er Muschelkalk:	rh = anisische R	eichenhall	er Schichten, z.T	brekziiert:		
		wk = ladinisch	er Wettersteink	alk; dk = norische	er Dachste	inkalk		-	
		go = Oberkrei	de; untere bis n	nittlere Gosau mit	Kalksteine	en, z.T. sandig; h	äufig Mikrokalk-Brek	zien + tiefroter 1	Tupfung (Eisenoxide)
Karwend	elgrube / Karwende	elgebirge							
Probe	Gestein	CaCO ₃ [%]	MgCO3 [%]	Residuum [%]	Summe	Farbe trocken		Farbe naß	1.80.00
(G 1/4	mk, grau	92,1	1,0	6,2	99,3	5 Y 7/1	light gray	5 Y 6/1	gray
KG 2/3	mk, grau	97,9	0,4	3,7	102,0	5 Y 7/1	light gray	5 Y 6/1	gray
KG 7/4	mk, weiß	95,9	0,8	4,7	101,4	7.5 YR 8/1	white	7.5 YR 8/1	white
KG 8/4	mk, weiß	89,5	3,1	6,1	98,7	2.5 Y 8/1	white	2.5 Y 7/2	light gray
Mittelwert	mk	93,9	1,3	5,2	100,4			1	
KG 4/2	rh, graubraun	92,8	0,4	5,24	98,4	2.5 Y 5/4	light olive brown	2.5 Y 7/2	light gray
KG G1	rh, graubraun	94,7	0,2	3,1	98,0	2.5 Y 5/4	light olive brown	2.5 Y 7/2	light gray
KG G2	rh, gelb	98,8	1,4	2,7	102,9	2.5 Y 5/4	light olive brown	2.5 Y 7/3	pale yellow
Mittelwert	rh Kalk	95,4	0,7	3,7	99,8	1	and the second sec	111 Contract 1997	
KG 5/4	rh, Brekzie, gelb	77,5	2,4	15,1	95,0	2.5 Y 8/3	pale yellow	2.5 Y 6/3	light yellowish brown
KG 9/3	rh, Brekzie, gelb	60,2	27,2	12,1	99,5	2.5 Y 7/2	light gray	2.5 Y 6/2	light brownish gray
KG G3	rh, Brekzie	70,1	15	14,9	100,0	2.5 Y 7/2	light gray	2.5 Y 6/2	light brownish gray
Vittelwert	rh Brekzie	69,3	14,9	14,0	98,2	1			1
Neokom	der lungschichtenz	ana / S. Rand	das Wattar	toingshiroos					
Probe	Gestein	CaCO ₃ [%]	MgCO ₃ [%]	Residuum [%]	Summe	Farbe trocken	1	Farbe naß	1
Veo G 6	Kalkmergel, grau	73.8	8.9	16.8	99.5	10 YR 8/1	white	10 YR 7/1	light arey
Veo G 7	bunter Kalk, rot	83.5	0	16,5	100.0	7.5 YR 8/2	pinkish white	7.5 YR 7/3	nink
Neo G 8	Aptychenmergel, rot	30.6	1.7	66.7	99.0	5 YR 7/3	pink	5 YR 5/3	reddish brown
Mittelwert	Neokom, Trauchlet	62.6	3.5	33.3	99.5		P		

Verhältnis	s von karbonatische	n und nichtkar	rbonatische	n Anteilen im	Gestein	[%]		1	Nr. 12
Edăuterninge	20.	mk = anisische	er Muschelkalk	rh = anisische R	eichenhall	er Schichten z T	prekzijert:	+	
Linutarange		wk = ladinisch	er Wettersteink	alk dk = norische	r Dachste	inkalk			
		ao = Oberkrei	de: untere bis n	tittlere Gosau mit	Kalksteine	n z T sandig hät	fig Mikrokalk-Brek	zien + tiefroter Tu	nfung (Eisenoxide)
		90 000minon		intere e cooda mit	T Control to inte	ing an is deriving, ner			plang (Electronido)
		1				-			
Zugspilzp	alt / Wettersteinge	birge			-				
Probe	Gestein	CaCO ₃ [%]	MgCO ₃ [%]	Residuum [%]	Summe	Farbe trocken		Farbe naß	
ZP 17/5	wk. weiß	97.8	0	2.2	100,0	10 YR 8/1	white	10 YR 8/1	white
ZP 18/3	wk, grau	95,2	4,1	1,5	100,8	10 YR 7/1	light gray	10 YR 7/3	very pale brown
ZP 19/2	wk, weiß	98,2	2,3	1,5	102,0	10 YR 8/1	white	10 YR 8/1	white
ZP 33/2	wk, weiß	94,3	2,0	3,8	100,1	10 YR 8/1	white	10 YR 8/2	very pale brown
ZP 34/2	wk, grau	97,0	1,5	1,5	100,0	10 YR 7/1	light gray	10 YR 7/3	very pale brown
Mittelwert	wk, weiß	96,5	2,0	2,1	100,6				
Doillosolla	/ Resolution								
Renercip	e / berchiesgooene	Alpen	14-00 19/1	Destaura MIT	0	Profestion and the second	1	In the set	
Probe	Gestein	GaGO3 [70]	MgCO3 [76]	Residuum [%]	Summe	Farbe trocken		Farbeinais	
RA 5/2	dk, weiß	87,5	2,5	9,9	99,9	7.5 YR 8/1	white	7.5 YR 8/1	white
RA 6/4	dk, weiß	94,5	1,6	4,1	100,2	7.5 YR 8/1	white	7.5 YR 8/1	white
RA G5	dk, weiß	93,7	0	6,3	100,0	10 YR 8/1	white	10 YR 8/2	very pale brown
Mittelwert	dk, weiß	91,9	1,4	6,8	100,0		1	1	1
RA 7/3	dk, rotgeadert	88,7	8,1	2	98,8	5 YR 8/2	pinkish white	5 YR 8/3	pink
RA 8/3	dk, rotgeadert	84,7	12	2	98,7	7.5 YR 8/2	pinkish white	7.5 YR 8/2	pinkish white
RA 10/4	dk, weilSrot geädert	93,3	4,1	2,4	99,8	5 YR 8/2	pinkish white	5 YR 8/3	pink
Mittelwert	dk, rotgeädert	88,9	8,1	2,1	99,1				
RA 1/2	dk, rot	87,7	1.7	10,1	99,5	5 YR 8/2	pinkish white	5 YR 8/3	pink
RA 2/2	dk, rote Brekzie	89,6	0	10,4	100,0	5 YR 7/6	reddish yellow	5 YR 6/8	reddish yellow
RA 3/2	dk, + roten Belägen	90,6	0	9,4	100,0	5 YR 8/4	pink	5 YR 7/8	reddish yellow
Mittelwert	dk, rot+brekzilert	89,3	0,6	10,0	99,8			1.	
RA 9/5	go,brekziiert	85,1	9,1	4,7	98,9	7.5 YR 8/3	pink	7.5 YR 8/4	pink
RA G9	go,brekzijert	87,5	6,8	6,8	101,1	7.5 YR 8/3	pink	7.5 YR 8/4	pink
RA G10	go,brekzilert	89,1	7,8	3,2	100,1	7.5 YR 8/3	pink	7.5 YR 8/4	pink
Mittelwert	Gosaukalk	87,3	5,5	7,2	99,9				

10.6 Staubquantifizierung

Summen und	Mittel	werte de	r Flug	staubr	enger	[mg] 2	002 ur	nd 2003		Klimadaten	(Niede	rachlag	und "	Windtät	igkeit) 20	02 und 2	003	-	1-1			1
		1.0						1				1000							1		Nr. 13	
2. KGSP(TZPLAT	T Well	Mellon Igner	QC I				-	12.1	-	Niederachlag	Summa	der Win	dtäligke	Il pro Tag	, Sektor (n	us n h]				-		-
Meßintervall	Tage	Summe	a (em) e	bo/ mine K	istm.	Mittelw	ert (mg)	über alle	Kästen	NS (mm)	1-30*	31-60"	61-90°	91-120°	121-150	151-180*	181-210*	211-240*	241-270*	271-300°	301-331"	331-360"
24.6	d	Festitoff	Silikat	Humus	CaCO ₃	Festaloff	Slilkat	Humus	CHCOI		100	100			596.6	101.1	-70.4	100 0	12000		100	620.0
31.5 02.07.02	32	1886	1269	583	8	3/1	259	11/	2	156,1	138	12,2	11,8	20,6	3/5,5	491,1	178,4	129,5	1983,8	8.32	933	672,9
02.07-02.07.02	1 7	400	242	142	40	0.3	04	10	12	03,5	1 35,4		1	20.2	444.7	330,0	104.0	24.0	201,3	47.7	101,0	7.5
09.0716.07.02	1 10	482	343	(10	400	94	09	23		(0)	040		4,1	09,4	441,0	107,0	129,3	34,0	10,1	14,1	204.0	697.6
10.07.401.06.02	10	2303	1308	1302	102	100	2/4	2/0	30	137,	213	4,0	4.0	40,1	2.33,1	295.0	4413	EA 0	106 1	74.7	52.9,0	400.4
01.08-15.00.02	14	/00	280	409		102		94		120,3	440,1	19,3	4,8	9,1	207,0	200,9	104.4	100.4	100,1	74.3	02,0	490.
15.0807.09.02	1 23	422	2/9	142	4	84	50	28	0,4	91	220,2	04,4	3/,3	09/60	510,1	393,1	104,4	100,4	310	472.0	130.1	30,4
28.0603.07.03	20	402	200	140		00	170	430	0,2	33,0	2,1,0	60	12	-	100.0	110,9	32,1	4053	076.0	400 0	460.0	1025 0
03.0731.07.03	20	1000	09/	1002	-	312	1/3	132	1,4	110,5	230	0,2	1,0	26.4	100,0	130	1420	103,0	030,8	900,0	400,8	1000,0
31.0721.08.03	21	409	200	180	-	9/	59	30	2	21,	400,3	00/2	92,1	02,1	100,9	341,9	113,9	30,1	C00,0	343,3	424,1	428,2
27.0810.09.04	22	390	244	137	10.0	18	98	21	4	108,	399,9	45,3	25,5	15,9	328,4	360,9	148,8	70,5	456,7	315,6	23/,2	65/,
KARWENDELGR	RUBEIN	Canvwindalig	ebirge							Niederschlag	Summe	e der Wir	dtätigke	it pro Tag	, Sektor (m	/s x h]		-			-	
Meßintervall	Tage	ລົມກາກເ	e (mg) u	ber alle K	asten	Mittelw	wrt (mg)	über alle	Kästen	NS [mm]	1-30"	31-60*	61-90*	91-120*	121-150*	151-180*	181-210*	211-240*	241-270°	271-300°	301-331°	331-360"
	đ	Festsloff	Silikat	Humus	CaCO ₁	Festsloff	Slikat	Humus	CaCO ₃			-	1.1.1	-	-							1
30.06 -24.08.02	56	1346	753	1061	1	586	321	265	0,3	389,4	760,2	23,2	22,4	123	1121	1155	428,2	254,2	1445,8	531,2	439,8	1329,2
24.0802.09.02	9	319	126	179	14	08	32	45	4	41.5	112,3	41,6	30,1	46,8	257,5	117,5	120,3	27	63	15,7	4,2	0
02.09-13.09.02	11	242	68	136	38	60	17	34	10	35,3	2 B5,8	3,7	13,5	215,4	297	365,9	113,1	55,9	45,4	34,4	51,9	52,3
13.0923.09.02	10	123	15	95	10	31	4	24	3	54,4	4.5	- 43	7,6	18	2,9	3,5	10,5	329,1	306,4	258,2	255,7	
30.0514.05.03	15	785	657	121	7	262	219	40	2	50,4	129,2	17,4	6,6	3,7	128,6	143,1	108,1	82,5	288,7	122,2	90,6	311,4
14.0620.06.03	6	594	413	213	1000	149	103	53	0,1	41.	67,7	1 1	0	0	0	0	0	5,1	119,6	63,3	109	489,7
20.0602.07.03	12	254	189	63		64	47	16	0,9	30,0	35,3	0	0	0	0	106,6	24,7	20,4	284.7	135,8	444,5	813,3
02.0709.07.03	7	44	34	4	16	11	8	1	5	18,	10,3		0	0	0	13,5	12,1	13,7	101,4	210,4	225	352,2
E0.70.0670.00	21	726	393	330	1	181	98	82	0,8	101,-	196,6	6,5	1,3	5	101,5	126,6	60	86,2	762,3	347,6	222,7	732.0
30.0717.08.03	18	306	160	126	0	77	45	31	0	32,	482,3	66,9	38,7	64	163,5	48.7	10.2	20,3	317.1	153	99,2	263,6
17.0826.08.03	10	288	187	101	0	72	-47	25	0	19,4	20,5	5 0	3,4	- 13	32,6	93,2	106,3	77,8	533,3	161,6	110,2	41,8
26.0504.09.03	9	186	127	B1	1.5.9	47	32	15	0,3	55,3	48,4	0	2,2	- 13	12,8	208	82.7	49	370,7	199,1	174,1	363,1
04.0917.09.03	13	153	124	16	3	38	31	4	3	114	322,3	36,2	23,3	14,8	315,6	152,4	64.8	21,5	85,1	116	71	372,7
REITERALPE	ierchtea	gadenar A	pen -	-			_		-	Niederschlag	Summe	a der Wir	dtätigke	elt pro Tag	a, Sektor (n	nis x h]		-	-		-	
MeEintervall	Tage	Summ	e (moj Li	Der mile K	asten	Mittelw	ert (mg)	über alle	Kästen	NS (mm)	1-30"	31-60°	61-90°	91-120-	121-150"	153-180	181-210"	211-240°	241-270"	271-300°	301-331*	331-360°
1	d	Feststoff	Sikat	Humus	CaGO	Feststoff	Sakat	Humus	CaCO ₁						1	-				1		
03.0717.07.02	14	1554	1041	512	10.0	389	260	128	0,3	118,9	0 0	0	30,5	10,6	10	0	1,1	t t	4,9	11.4	0	(
17.0730.08.02	44	937	501	434	2	234	125	108	1	.288	226,6	103,2	24,2	142,6	254,3	175,7	156,7	236,8	390	719,2	472,1	330,4
30.0806.09.02	7	328	160	159		1 12	40	40	2	38,6	10,9	4,6	24	44,2	58,5	53,4	17,3	6,8	31,6	12,7	38,1	72,8
05.0920.09.02	14	133	18	100	14	33	5	24	4	43,4	31,8	18,3	35	56	58,7	39,2	66,1	77,2	285,3	174,3	159,8	86,7
12.0626.06.03	14	249	149	97	3	62	37	24	1	45.5	78,6	0	0	0	8.5	18	8,5	5,1	377,1	153,5	480,9	1152,3
26.0608.07.03	11	413	351	59		103	88	15	1	48,3	42,2	0	0 0	0	0	199,9	46,5	34,1	183,9	317,2	355,8	597,4
08.07-07.08.03	30	299	150	147	3	75	37	37	1	109,1	360,5	51,4	22	41,3	254	173,7	87.1	93,8	785,8	377,1	253,1	873,3
07.0816.08.03	15	78	39	38		19	10	9	0,3	21.4	328,6	24,4	18	27,7	1 11	1,6	3,1	14,7	293,8	135,2	78,3	209,1
16.0828.08.03	10	227	164	57	E	57	41	14	0,5	23,	29,7	1	5,6	1,1	32,5	152,6	127,2	83,2	690,9	210,8	203,7	168,6

Zugspit	zplatt / \	Netterste	eingebirg	ge	1										Nr. 14		
Eintrag [mg]			-		1) Konta	amination	durch Vieh	tritt								
1. Gesam	leintrag G	[mg] - Sed	mentkaste	an SK			1		1. Silikats	laubeintrag	S [mg] - S	Sedimentkä	sten SK				
Meßinter-	1	2	3	4	5	6	LAN Comment		Meßinter-	1	2	3	4	5	6	Lauren .	o mart
vall MI	31.5 02.07.02	02.07 09.07.02	09.07 16.07.02	16.07 01.08.02	01.08 15.08.02	15.08 07.09.02	pro	Summe [mg] pro Kasten	vall MI	31.5 02.07.02	02.07 09.07.02	09.07 16.07.02	16.07 01.08.02	01.08 15.08.02	15.08 07.09.02	pro	[mg] pro
Tage	32	7	7	16	14	23	Kasten		Tage	32	7	7	18	14	23	Kasten	Nasten
SK1	457	73	184	607	133	121	262,5	1575	SK1	260	5	148	185	71	96	127,5	765
SK2 SK3 SK4	280 268 401	542 ¹⁾ 51 57	24 36	576 395 695	7 108 140	22 56	181,8 152,3 251,7	909 914 1510	SK2 SK3 SK4	157 172 313	542 ¹⁾ 30 45	7 29 77	194 155 222	30	0 18 67	72,2 67,3 122,2	361 404 733
SK5	480	71	107	630	172	117	262.8	1577	SK5	394	5	82	258	103	98	156.7	940
MW pro Intervall	377,2	63,0	92,4	580,6	112,0	84,4	Summe Tage	99	MW pro Intervall	259,2	21,3	68,6	202,8	37,2	55,8	Summe Tage	99
Summe pro Intervall	1886	252	462	2903	560	422	Summe [m] M1 bis M6	6485	Summe pro Intervall	1296	85	343	1014	186	279	Summe (m) M1 bis M6	3203
1 Humus	emiran H [mai - Sedir	nenikaster	SK					1 Kalksta	ubeiniraq	K [ma] - Se	dimenikas	ten SK				-
Meßinter-	1 1	2	3	4	5	6			Meßinter-	1 1	2	3	4	5	6		
vall MI	31.5 02.07.02	02.07 09.07.02	09.07 16.07.02	16.07 01.08.02	01.08 15.08.02	15.08 07.09.02	MW [mg] pro Kasten	Summe (mg) pro Kasten	vall MI	31.5 02.07.02	02.07 09.07.02	09.07 16.07,02	16.07 01.08.02	01.08 15.08.02	15.08 07.09.02	MW [mg] pro Kasten	Summe (mg] pro Kasten
Tage	32	7	7	16	14	23			Tage	- 32	7	7	16	14	23	1.11	
SK1 SK2	197 120	26	35 15	419 380	62	24	127,2 108,4	763 542	SK1 SK2	0	42	1	3	0	1	7,8 1,4	47
SK3 SK4	94 87	21 6	6 34	196 391	103 131	38 38	76,3 114,5	458 687	SK3 SK4	2	0	1	44 82	5	0	8,7 15,1	52 91
SK5 MW pro	85	18,5	25	351	69 73,8	28,4	95,0 Summe	570	SK5 MW pro	1,6	12,0	0,8	30,4	1.0	0.4	3,7 Summe	22
Intervali Summe pro Intervali	583	74	115	1737	369	142	Tage Summe [m[M1 bis M6	3020	Intervall Summe pro Intervall	8	48	4	152	5	2	Tage Summe [m] M1 bis M6	219

Staub aus Regenniederschlag - Sommer 2002

Zugspit	zplatt / V ten (mg/c	Vetterste]	ingebirg	je	I										Nr. 15		
1. Gesam	leintrag G	[mg/d] - Se	dimentkäs	len SK		· · · · · ·			1. Silikats	aubeintrag	S [mg/d] -	Sediment	kästen SK				
Meßinter-	1	2	3	4	5	6			Meßinter-	1	2	3	4	5	6	1.000	
vall MI	31.5 02.07,02	02.07 09.07.02	09.07 16.07.02	16.07 01.08.02	01.08 15.08.02	15.08 07.09.02	MW [mg] pro Kasten	Summe [mg] pro Kasten	vall MI	31.5 02.07.02	02.07 09.07.02	09.07 16.07.02	16.07 01.08.02	01.08 15.08.02	15.08 07.09.02	MW [mg] pro Kasten	Summe [mg] pro Kasten
Tage	32	7	7	16	14	23		1	Tage	32	7	7	16	14	23	1000	
SK1	14,3	10,4	26,3	37,9	9,5	5,3	17,3	104	SK1	8,1	0,7	21,1	11,6	5,1	4,2	8,5	51
SK2	8,8		3,4	36,0	0,5	1,0	9,9	50	SK2	4,9	-	1,0	12,1	0,2	0,0	3,6	18
SK3	8,4	7,3	5,1	24,7	7,7	2,4	9,3	56	SK3	5,4	4,3	4,1	9,7	0,0	0,8	4,0	24
SK4	12,5	8,1	15,9	43,4	10,0	4,6	15,8	95	SK4	9,8	6,4	11.0	13,9	0,6	2,9	7,4	45
SK5	15,0	10,1	15,3	39,4	12,3	5,1	16,2	97	SK5	12,3	0,7	- 11,7	16,1	7,4	4,3	8,7	52
MW pro Intervall	11,8	9,0	13,2	36,3	8,0	3,7	Summe Tage	99	MW pro Intervall	8,1	3,0	9,8	12,7	2,7	2,4	Summe Tage	99
Summe pro Intervall	59	36	66	181	40	18	Summe (m) M1 bis M6	401	Summe pro Intervall	41	12	49	63	13	12	Summe [m] Gesaml	190
1. Humus	eintrag H (mg/d]-Sec	limentkäst	en SK					1. Kalksta	ubeintrag l	K [mg/d] - 5	Sedimentka	isten SK	-	-		-
Meßinter-	1-1-1	2	3	4	5	6			Meßinter-	1	2	3	4	5	6		
vall MI	31.5 02.07.02	02.07 09.07.02	09.07 16.07.02	16.07 01.08.02	01.08 15.08.02	15.08 07.09.02	MW [mg] pro Kasten	Summe [mg] pro Kasten	vall Mi	31.5 02.07.02	02.07 09.07.02	09.07 16.07.02	16.07 01.08.02	01.08 15.08.02	15.08 07.09.02	MW [mg] pro Kasten	Summe [mg] pro Kasten
Tage	32	7	7	16	14	23			Tage	32	7	7	16	14	23	1	10000
SK1	6,2	3,7	5,0	26,2	4,4	1,0	7,8	47	SK1	0,0	6,0	0,1	0,2	0,0	0,04	1,1	6
SK2	3,8		2,1	23,8	0,3	1.0	6,2	31	SK2	0,1		0,3	0,1	0,0	0,00	0.1	0
SK3	2,9	3,0	0,9	12,3	7,4	1,7	4,7	28	SK3	0,1	0,0	0,1	2,8	0,4	0,00	0,6	3
SK4	2,7	0,9	4,9	24,4	9,4	1,7	7,3	44	SK4	0,1	0,9	0,0	5,1	0,0	0,04	1.0	6
SK5	2,7	3,0	3,6	21,9	4,9	0,8	6,2	37	SK5	0,0	0,0	0,0	1,3	0,0	0,00	0,2	1
MW pro Intervali	3,6	2,6	3,3	21,7	5,3	1,2	Summe Tage	99	MW pro Intervall	0,05	1,7	0,11	.1,9	0,07	0,02	Summe Tage	99
Summe pro Intervall	18	11	16	109	26	6	Summe [m] Gesamt	186	Summe pro Intervall	0	7	1	10	0	0	Summe (m) M1 bis M6	18

Zugspitzplatt / Wettersteingebirge Tägliche Eintragsraten [µg/d/cm²]

Nr. 16

1. Gesamteintrag G [µg/d/cm²] - Sedimen 1. Silikatstaubeintrag S (µg/d/cm²) - Sedimentkästen SK MeBinter-Meßinter-1 2 3 4 5 6 1 2 3 4 6 5 MW [mg] 15.08.-07.09.02 31.5.- 02.07.- 09.07.- 16.07.- 01.08.-02.07.02 09.07.02 16.07.02 01.08.02 15.08.02 MW [mg] Summe vall MI 15.08.vall MI 31.5. -02.07.-09.07.-16.07.-01.08.-Summe [mg] [mg] pro 07.09.02 pro 02.07.02 09.07.02 16.07.02 01.08.02 15.08.02 pro pro Kasten Kasten Kasten Kasten Tage Tage 16 14 12 22,1 161 SK1 77 SK2 86 SK3 17,9 18,8 SK1 16,1 40,7 58,7 26,8 12,6 7,9 0,3 0,0 14,7 8,1 1,1 32,7 6,5 13,1 79 1,5 0,0 1,2 4,5 SK2 55,7 0,8 15,4 28 5,3 7,6 1,5 5,6 38,2 67,2 61,0 6,4 17,0 18,1 15,0 21,5 38 69 SK3 11,9 8,3 13,0 11,3 8,0 14,4 6,6 6,3 SK4 19,4 12,6 24,5 15,5 7,1 24,4 146 SK4 15,1 10,0 1.0 11,5 81 SK5 23,2 15,7 23,7 19,0 7,9 25,1 150 SK5 19,1 1,1 25,0 11,4 6,6 13,5 5,7 Sum Tage MW pro Summe MW pro Summe 12,5 4,7 15,2 3,8 18,2 13,9 20,4 56,2 12,4 19,6 4,1 99 Intervall 99 Intervall Tage Summe Summe umme Summe 91 56 102 62 63 19 76 98 21 281 28 [m] M1 19 [m] M1 pro pro bis MB 620 Interva bis M6 295 Interval

T. Humus	olourag H	ug/d/cm ²]-	Sediment	kasten SK					I Kalksia	ubeintrag I	Tµg/d/cm	- Sedime	Infkasten St	ĸ			-
Meßinter-	1	2	3	4	5	6			Meßinter-	1 1	2	3	4	5	6	1 may 1 may 1	
vall MI	31.5 02.07.02	02.07 09.07.02	09.07 16.07.02	16.07 01.08.02	01.08 15.08.02	15.08 07.09.02	MW [mg] pro Kasten	Summe [mg] pro Kasten	vall MI	31.5 02.07.02	02.07 09.07.02	09.07 16.07.02	16.07 01.08.02	01.08 15.08.02	15.08 07.09.02	MW [mg] pro Kasten	Summe [mg] pro Kasten
Tage	32	7	7	16	14	23			Tage	32	7	7	16	14	23		C 29 1
SK1	9,5	5,7	7,7	40,5	6,9	1,6	12,0	72	SK1	0,0	9,3	0,2	0,3	0,0	0,1	1,6	10
SK2	5,8		3,3	36,8	0,4	1,5	9,6	48	SK2	0,1		0,4	0,2	0,0	0,0	0,2	1
SK3	4,5	4,6	1,3	19,0	11,4	2,6	7,2	43	SK3	0,1	0,0	0,2	4,3	0,6	0,0	0,9	5
SK4	4,2	1,3	7.5	37,8	14,5	2,6	11,3	68	SK4	0,1	1,3	0,0	7,9	0,0	0,1	1,6	9
SK5	4,1	4,6	5,5	34,0	7,6	1,3	9,5	57	SK5	0,1	0,0	0,0	2,0	0,0	0,0	0,3	2
MW pro Intervall	5,6	4.1	5,1	33,6	8,2	1,9	Summe Tage	99	MW pro Intervall	0,1	2,7	0,2	2,9	0,1	0,03	Summe Tage	99
Summe pro Intervall	28	16	25	168	41	10	Summe [m] M1 bis M6	288	Summe pro Intervall	0	0	1	15	4	0	Summe [m] M1 bis M6	27

Staub aus Regenniederschlag - Sommer 2002

Westl. Karwendelgrube / Karwendelgebirge Eintrag [mg]

1. Gesamtein	trag G [mg] -	Sedimentka	isten SK				1. Silikatstaut	beintrag S [n	ng] - Sedim	entkästen S	SK	-	
Meßintervall	1 1	2	3	4	MAL Const	Cummo	Meßintervall	1 - 1	2	3	4		Cummo
MI	30.06	24.08	02.09	13.09	www [mg]	Summe	MI	30.06	24.08	02.09	13.09	MW [mg]	Summe
	24.08.02	02.09.02	13.09.02	23.09.02	pro	[mg] pro		24.08.02	02.09.02	13.09.02	23.09.02	pro Kasten	[mg] pro
Tage	55	9	11	10	Kasten	Kasten	Tage	55	9	11	10		Kasten
SK1	365	54	40	24	120,8	483	SK1	172	8	11	1	48,0	192
SK2	471	143	73	46	183,3	733	SK2	300	89	15	6	102,5	410
SK3	367	105	93	25	147,5	590	SK3	239	17	29	1	71,5	286
SK4	143	17	36	28	56,0	224	SK4	42	12	13	7	18,5	74
MW pro Intervall	336,5	79,8	60,5	30,8	Summe Tage	85	MW pro Intervall	188,3	31,5	17,0	3,8	Summe Tage	85
Summé pro Intervall	1346	319	242	123	Summe [m] M1bis M4	2030	Summe pro Intervall	753	126	68	15	Summe [m] M1bis M4	962

1. Humuseinti	rag H [mg] - S	Sedimentkä	sten SK				1. Kalkstaube	eintrag K (mg	1] - Sedime	ntkästen Sk	5		
Meßintervall MI	1	2	3	4	MW [mg]	Summe	Meßintervall MI	1	2	3	4	MIX how at	Summe
	30.06 24.08.02	24.08 02.09.02	02.09	13.09 23.09.02	pro Kasten	[mg] pro Kasten		30.06 24.08.02	24.08 02.09.02	02.09	13.09 23.09.02	pro Kasten	[mg] pro Kasten
Tage	55	9	11	10	1.1		Tage	55	9	11	10		
SK1	193	43	15	23	68,5	274	SK1	0	3	14	0	4,3	17
SK2	171	54	52	35	78,0	312	SK2	0	0	6	5	2,8	11
SK3	128	77	55	24	71,0	284	SK3	0	11	9	0	5,0	20
SK4	100	5	14	13	33,0	132	SK4	1	0	9	8	4,5	18
MW pro Intervall	148,0	44,8	34,0	23,8	Summe Tage	85	MW pro Intervall	0,3	3,5	9,5	3,3	Summe Tage	85
Summe pro Intervall	592	179	136	95	Summe (m) M1bis M4	1002	Summe pro Intervall	1	14	38	13	Summe [m] M1bis M4	66

Westl. Karwendelgrube / Karwendelgebirge Tagesraten [mg/d]

Nr. 18

1. Gesamteint	trag G [mg/d]	- Sediment	kästen SK				1. Silikatstaut	peintrag S [n	ng/d] - Sedi	mentkäster	SK	_	
Meßintervall Mi	1	2	3	4	MW [mg]	Summe	Meßintervall MI	1	2	3	4	(IIII Court)	Summe
	30.06 24.08.02	24.08 02.09.02	02.09 13.09.02	13.09 23.09.02	pro Kasten	[mg] pro Kasten		30.06 24.08.02	24.08 02.09.02	02.09 13.09.02	13.09 23.09.02	pro Kasten	[mg] pro Kasten
Tage	55	9	11	10	1	1	Tage	55	9	11	10		1
SK1	6,6	6,0	3,6	2,4	4,7	19	SK1	3,1	0,9	1,0	0,1	1,3	5
SK2	8,6	15,9	6,6	4,6	8,9	36	SK2	5,5	9,9	1,4	0,6	4,3	17
SK3	6,7	11,7	8,5	2,5	7,3	29	SK3	4,3	1,9	2,6	0,1	2,2	9
SK4	2,6	1,9	3,3	2,8	2,6	11	SK4	0,8	1,3	1,2	0,7	1,0	4
MW pro Intervall	6,1	8,9	5,5	3,1	Summe Tage	85	MW pro Intervall	3,4	3,5	1,5	0,4	Summe Tage	85
Summe pro Intervall	24	35	22	12	Summe (m) M1bis M4	94	Summe pro Intervall	14	14	6	2	Summe (m) Gesamt	35

1. Humuseintr	ag H [mg/d] -	Sediment	aslen SK				1. Kalkstaube	eintrag K (mg	g/d] - Sedim	nentkästen	SK		
Meßintervall MI	1	2	3	4	MW [mg]	Summe	Meßintervall MI	1	2	3	4	A MARCON A	Summe
	30.06 24.08.02	24.08 02.09.02	02.09 13.09.02	13.09 23.09.02	pro Kasten	[mg] pro Kasten	[30.06 24.08.02	24.08 02.09.02	02.09 13.09.02	13.09 23.09.02	pro Kasten	[mg] pro Kasten
Tage	55	9	11	10	1		Tage	55	9	11	10	1	
SK1	3,5	4,8	1,4	2,3	3,0	12	SK1	0,0	0,3	1,3	0,0	0,4	2
SK2	3,1	6,0	4,7	3,5	4,3	17	SK2	0,0	0,0	0,5	0,5	0,3	1
SK3	2,3	8,6	5,0	2,4	4,6	18	SK3	0,0	1,2	0,8	0,0	0,5	2
SK4	1,8	0,6	1,3	1,3	1,2	5	SK4	0,0	0,0	0,8	0,8	0,4	2
MW pro Intervall	2,7	5,0	3,1	2,4	Summe Tage	85	MW pro Intervall	0,00	0,39	0,86	0,33	Summe Tage	85
Summe pro Intervall	11	20	12	10	Summe [m] Gesamt	53	Summe pro Intervall	0,0	1,6	3,5	1,3	Summe [m] M1bis M4	6

Staub aus Regenniederschlag - Sommer 2002

Westl. Karwendelgrube / Karwendelgebirge

Tägliche Eintragsraten [µg/d/cm²]

Blatt 3

Nr. 19

1. Gesamteintrag G [µg/d/cm²] - Sedimentkästen SK 1. Silikatstaubelntrag S [µg/d/cm³] - Sedimentkästen SK Meßintervall Meßintervall 2 3 4 1 2 3 4 1 MW [mg] MI Summe Summe MI MW [mg] 30.06.-02.09.-30.06.-24.08.-02.09.-13.09.-24.08.-13.09.-[mg] pro pro [mg] pro pro Kasten 24.08.02 02.09.02 13.09.02 23.09.02 Kasten 24.08.02 02.09.02 13.09.02 23.09.02 Kasten Kasten Tage 55 11 10 Tage 55 11 10 29 SK1 0,2 SK1 10,3 9,3 5,6 3,7 7,2 4,8 1,5 2,0 1,4 8 55 SK2 SK2 13,3 24,6 10,3 7,1 13,8 15,3 27 8,4 2,1 0,9 6,7 SK3 10,3 45 SK3 18,1 13,1 3,9 11,3 6,7 2,9 0,2 3,5 14 4,1 SK4 4,0 2,9 5,1 4,3 4,1 16 SK4 1,2 2,1 1,8 1,1 1,5 6 MW pro MW pro Summe Summe 9,5 13,7 8,5 4,8 5,3 5,4 2,4 0,6 85 Intervall 85 Intervall Tage Tage Summe Summe Summe pro Summe pro 38 55 34 19 [m] M1bis 21 22 10 2 [m] M1bis Intervall Intervall M4 M4 146 55

1 Humuseinti	ag H jug/o/e	m] - Sedim	entkästen	SK			1. Kalkstaube	eintrag K [µg	/d/cm ² - Se	dimentkäst	en SK		
Meßintervall MI	1	2	3	4	MW [mg]	Summe	Meßintervall MI	1	2	3	4	All Imal	Summe
1	30.06 24.08.02	24.08	02.09	13.09 23.09.02	pro Kasten	[mg] pro Kasten		30.06	24.08 02.09.02	02.09	13.09 23.09.02	pro Kasten	[mg] pro Kasten
Tage	55	9	-11	10			Tage	55	9	11	10	1.10	1
SK1	5,4	7,4	2,1	3,6	4,6	18	SK1	0,0	0,5	2,0	0,0	0,6	2
SK2		9,3	7,3	5,4	7,3	22	SK2		0,0	0,8	0,8	0,5	2
SK3	3,6	13,2	7,7	3,7	7,1	28	SK3	0,0	1,9	1,3	0,0	0,8	3
SK4	2,8	0,9	2,0	2,0	1,9	8	SK4	0,0	0,0	1,3	1,2	0,6	3
MW pro Intervall	3,9	7,7	4,8	3,7	Summe Tage	85	MW pro Intervall	0,0	0,6	1,3	0,5	Summe Tage	85
Summe pro Intervall	12	31	19	15	Summe [m] M1bis M4	76	Summe pro Intervall	0	2	5	2	Summe [m] M1bis M4	10

Reiteralpe	/ Berchte	sgadene	r Alpen				MW = Mittely	wert				Nr. 20	
Eintrag [mg]				_		1) = Kontamii	nation durch	n Viehtritt (H	Kot, Erdbro	cken); Wei	t geht nicht ir	Berechnung
1. Gesamlein	trag G [mg]	- Sedimenti	kästen SK				1. Silikatstau	beintrag S	[mg] - Sedir	mentkäster	SK		
Meßintervall MI	1	2	3	4		Summe	Meßintervall MI	1	2	3	4		Summe
	03.07 17.07.02	17.07 30.08.02	30.08 06.09.02	06.09 20.09.02	MW [mg] pro Kasten	[mg] pro Kasten		03.07 17.07.02	17.07 30.08.02	30.08 06.09.02	06.09 20.09.02	MW [mg] pro Kasten	[mg] pro Kasten
Tage	14	44	7	14			Tage	14	44	7	14	1.0	1.1
SK1		264	139	29	144,0	432	SK1	702 1)	110	91	15	72,0	216
SK2	175	218	102	7	125,5	502	SK2	67	52	32	1	38,0	152
SK3	152	87	22	36	74,3	297	SK3	142	49	3	1	48,8	195
SK4	148	68	65	61	85,5	342	SK4	130	40	34	2	51,5	206
MW pro Intervall	158,3	159,3	82,0	33,3	Summe Tage	79	MW pro Intervall	113,0	62,8	40,0	4,8	Summe Tage	79
Summe pro Intervall	475	637	328	133	Summe [m] M1bis M4	1573	Summe pro Intervall	339	251	160	19	Summe [m] M1bis M4	769

r numuseinn	ag n [mg].	Semileun	asten on				I naivaianni	ennay n In	iy) - acolin	ennasten	on		
Meßintervall MI	1	2	3	4		Summe	Meßintervall MI	1	2	3	4		Summe
	03.07 17.07.02	17.07 30.08.02	30.08 06.09.02	06.09 20.09.02	MW [mg] pro Kasten	[mg] pro Kasten	_	03.07 17.07.02	17.07 30.08.02	30.08 06.09.02	06.09 20.09.02	MW [mg] pro Kasten	[mg] pro Kasten
Tage	14	44	7	14		1.1	Tage	14	44	7	14		
SK1	77 1)	153	48	14	71,7	215	SK1	0	1	0	0	0,3	1
SK2	107	166	70	7	87,5	350	SK2	1	0	0	0,5	0,4	2
SK3	10	37	10	21	19,5	78	SK3	0	1	9	14	6,0	24
SK4	18	28	31	59	34,0	136	SK4	0	1	0	0	0,3	1
MW pro Intervall	45,0	96,0	39,8	25,3	Summe Tage	79	MW pro Intervall	0,3	0,8	2,3	3,6	Summe Tage	79
Summe pro Intervall	135	384	159	101	Summe [m] M1bis M4	779	Summe pro Intervall	1	3	9	15	Summe (m) M1bis M4	28

Staub aus Regenniederschlag - Sommer 2002

Reiteralpe / Berchtesgadener Alpen

Tagesraten [mg/d]

1. Gesamtein	trag G [mg/d	d] - Sedime	ntkästen S	к			1. Silikatstau	beintrag S	mg/d] - Se	dimentkäst	en SK		
Meßintervall MI	1	2	3	4	104/11	Summe	Meßintervall MI	1	2	3	4	ANNI Frank	Summe
	03.07 17.07.02	17.07 30.08.02	30.08 06.09.02	06.09 20.09.02	pro Kasten	[mg] pro Kasten		03.07 17.07.02	17.07 30.08.02	30.08 06.09.02	06.09 20.09.02	pro Kasten	[mg] pro Kasten
Tage	14	44	7	14			Tage	14	44	7	14	1	Free August 1
SK1		6,0	19,9	2,1	9,3	28	SK1	·	2,5	13,0	1,1	5,5	17
SK2	12,5	5,0	14,6	0,5	8,1	33	SK2	4,8	1,2	4,6	0,1	2,7	11
SK3	10,9	2,0	3,1	2,6	4,6	19	SK3	10,1	1,1	0,4	0,1	2,9	12
SK4	10,6	1,5	9,3	4,4	6,4	26	SK4	9,3	0,9	4,9	0,1	3,8	15
MW pro Intervall	11,3	3,6	11,7	2,4	Summe Tage	79	MW pro Intervall	8,1	1,4	5,7	0,3	Summe Tage	79
Summe pro Intervall	34	14	47	10	Summe [m] M1bis M4	105	Summe pro Intervall	24	6	23	1	Summe [m] Gesamt	54

1. Humuseinti	rag H [mg/d] - Sedimen	tkästen Si	ç			1. Kalkstaub	eintrag K [m	ng/d] - Sedi	mentkäster	n SK		
Meßintervall MI	1	2	3	4		Summe	Meßintervall MI	1	2	3	4		Summe
	03.07 17.07.02	17.07 30.08.02	30.08 06.09.02	06.09 20.09.02	MW [mg] pro Kasten	[mg] pro Kasten		03.07 17.07.02	17.07 30.08.02	30.08 06.09.02	06.09 20.09.02	MW [mg] pro Kasten	[mg] pro Kasten
Tage	14	44	7	14		-	Tagé	14	44	7	14		
SK1	1	3,5	6,9	1,0	3,8	11	SK1	0,0	0,0	0,0	0,0	0,0	0
SK2	7,6	3,8	10,0	0,5	5,5	22	SK2	0,1	0,0	0,0	0,0	0,0	0
SK3	0,7	0,8	1,4	1,5	1,1	4	SK3	0,0	0,0	1,3	1,0	0,6	2
SK4	1,3	0,6	4,4	4,2	2,6	11	SK4	0,0	0,0	0,0	0,0	0,0	0
MW pro Intervall	3,2	2,2	5,7	1,8	Summe Tage	79	MW pro Intervall	0,0	0,0	0,3	0,3	Summe Tage	79
Summe pro Intervall	10	9	23	7	Summe [m] Gesamt	48	Summe pro Intervall	0	0	1	1	Summe [m] M1bis M4	2

Nr. 21

E

Reiteralpe / Berchtesgadener Alpen Tägliche Eintragsraten [µg/d/cm²]

1. Gesamteint	trag G [µg/d	J/cm ²] - Sed	limentkäst	en SK	_		1. Silikatstau	beintrag S [µg/d/cm²]	Sediment	kästen SK		
Meßintervall Mi	1	2	3	4	104/0001	Summe	Meßintervall MI	1	2	3	4	10415-2	Summe
1 mar. 1	03.07 17.07.02	17.07 30.08.02	30.08 06.09.02	06.09 20.09.02	pro Kasten	[mg] pro Kasten		03.07 17.07.02	17.07 30.08.02	30.08 06.09.02	06.09 20.09.02	pro Kasten	[mg] pro Kasten
Tage	14	44	7	14			Tage	14	44	7	14		
SK1	-	9,3	30,7	3,2	14,4	43	SK1		3,9	20,1	1,7	8,6	26
SK2	19,3	7,7	22,6	0,8	12,6	50	SK2	7,4	1,8	7,1	0,1	4,1	16
SK3	16,8	3,1	4,9	4,0	7,2	29	SK3	15,7	1,7	0,7	0,1	4,5	18
SK4	16,4	2,4	14,4	6,7	10,0	40	SK4	14,4	1,4	7,5	0,2	5,9	24
MW pro Intervall	17,5	5,6	18,1	3,7	Summe Tage	79	MW pro Intervall	12,5	2,2	8,8	0,5	Summe Tage	79
Summe pro Intervall	53	22	73	15	Summe [m] M1bis M4	162	Summe pro Intervall	37	9	35	2	Summe [m] M1bis M4	84

1. Humuseinh	rag H [µg/d	(cm²] - Sedi	menlkäste	n SK			1. Kalkstaub	eintrag K [µ	g/d/cm2 - S	Sedimentkä	sten SK		-
Meßintervall MI	1	2	3	4		Summe	Meßintervall MI	1	2	3	4		Summe
	03.07 17.07.02	17.07 30.08.02	30.08 06.09.02	06.09 20.09.02	MW [mg] pro Kasten	[mg] pro Kasten	1	03.07 17.07.02	17.07 30.08.02	30.08 06.09.02	06.09 20.09.02	MW [mg] pro Kasten	[mg] pro Kasten
Tage	14	44	7	14			Tage	14	44	7	14		
SK1	1.27	5,4	10,6	1,5	5,8	18	SK1	1	0,0	0,0	0,0	0,0	0
SK2	11,8	5,8	15,5	0,8	8,5	34	SK2	0,1	0,0	0,0	0,1	0,0	0
SK3	1,1	1,3	2,2	2,3	1,7	7	SK3	0,0	0,0	2,0	1,5	0,9	4
SK4	2,0	1,0	6,9	6,5	4,1	16	SK4	0,0	0,0	0,0	0,0	0,0	0
MW pro Intervall	5,0	3,4	8,8	2,8	Summe Tage	79	MW pro Intervall	0,04	0,0	0,5	0,4	Summe Tage	79
Summe pro Intervall	15	14	35	11	Summe [m] M1bis M4	75	Summe pro Intervall	0,1	0	2	2	Summe (m) M1bis M4	4

Staub aus Regenniederschlag - Sommer 2003

Zugspitzplatt / Wettersteingebirge Eintrag [mg]

1. Gesamte	intrag G [m	g] - Sedimi	entkästen i	SK			1. Silikatst	aubeintrag	S [mg] - Se	dimentkäst	en SK		
Meßinter-	1	2	3	4	ANA/ funnal	Cumme	Meßinter-	1	2	3	4		Cumment
vall MI	26.06	03.07	31.07	27.08	www [mg]	Summe	vall MI	26.06	03.07	31.07	27.08	MW [mg]	Summe
	03.07.03	31.07.03	27.08.03	18.09.03	pro	[mg] pro		03.07.03	31.07.03	27.08.03	18.09.03	pro Kasten	[mg] pro
Tage	7	28	27	22	Nasien	Nasten	Tage	7	28	27	22	1	Nasten
SK1	69	370	133	78	162,5	650	SK1	44	168	88	47	86,8	347
SK2	87	290	100	45	130,5	522	SK2	50	134	48	28	65,0	260
SK3	128	320	88	76	153,0	612	SK3	79	200	48	42	92,3	369
SK4	28	280	94	110	128,0	512	SK4	22	154	59	68	75,8	303
SK5	90	306	69	81	136,5	546	SK5	60	241	53	59	103,3	413
MW pro Intervall	80,4	313,2	96,8	78,0	Summe Tage	84	MW pro Intervall	51,0	179,4	59,2	48,8	Summe Tage	84
Summe pro Intervall	402	1566	484	390	Summe [m] M1 bis M4	2842	Summe pro Intervall	255	897	296	244	Summe [m] M1 bis M4	1692

1. Humusen	ntrag H (mg] - Sedime	ntkästen S	ĸ			1. Kalkstau	Ibeintrag K	[mg] - Sed	imentkästei	n SK		-
Meßinter-	1	2	3	4	262.00		Meßinter-	1	2	3	4	1	
vall MI	26.06 03.07.03	03.07 31.07.03	31.07 27.08.03	27.08 18.09.03	MW [mg] pro Kasten	Summe [mg] pro Kasten	vall MI	26.06 03.07.03	03.07 31.07.03	31.07 27.08.03	27.08 18.09.03	MW [mg] pro Kasten	Summe [mg] pro Kasten
Tage	7	28	27	22	nasten	naston	Tage	7	28	27	22		A dater
SK1	25	199	45	29	74,5	298	SK1	0	3	0	2	1,3	5
SK2	37	155	50	12	63,5	254	SK2	0	1	2	5	2,0	8
SK3	48	118	34	34	58,5	234	SK3	1	2	6	0	2,3	9
SK4	6	125	35	40	51,5	206	SK4	0	1	0	2	0,8	3
SK5	30	65	16	22	33,3	133	SK5	0	0	1	0	0,3	1
MW pro Intervall	29,2	132,4	36,0	27,4	Summe Tage	84	MW pro Intervall	0,2	1,4	1,8	1,8	Summe Tage	84
Summe pro Intervall	146	662	180	137	Summe [m] M1 bis M4	1125	Summe pro Intervall	1	7	9	9	Summe [m] M1 bis M4	26

Zugspitzplatt / Wettersteingebirge Tagesraten [mg/d]

Nr. 24

1 Gesamte	intrag G [m	g/d] - Sedir	nentkäster	1 SK			1. Silikatst	aubeintrag	S [mg/d] - 5	Sedimentkā	sten SK		
Meßinter-	1	2	3	4		1	Meßinter-	1	2	3	4	1	· · · · ·
vall MI	26.06	03.07	31.07	27.08	MW [mg]	Summe	vall MI	26.06	03.07	31.07	27.08	MIN Imal	Summe
	03.07.03	31.07.03	27.08.03	18.09.03	pro Kasten	[mg] pro Kasten		03.07.03	31.07.03	27.08.03	18.09.03	pro Kasten	[mg] pro Kasten
Tage	7	28	27	22			Tage	7	28	27	22		
SK1	9,9	13,2	4,9	3,5	7,9	32	SK1	6,3	6,0	3,3	2,1	4,4	18
SK2	12,4	10,4	3,7	2,0	7,1	29	SK2	7,1	4,8	1,8	1,3	3,7	15
SK3	18,3	11,4	3,3	3,5	9,1	36	SK3	11,3	7,1	1,8	1,9	5,5	22
SK4	4,0	10,0	3,5	5,0	5,6	22	SK4	3,1	5,5	2,2	3,1	3,5	14
SK5	12,9	10,9	2,6	3,7	7,5	30	SK5	8,6	8,6	2,0	2,7	5,5	22
MW pro Intervall	11,5	11,2	3,6	3,5	Summe Tage	84	MW pro Intervall	7,3	6,4	2,2	2,2	Summe Tage	84
Summe pro Intervall	57	56	18	18	Summe [m] M1 bis M4	149	Summe pro Intervall	36	32	11	11	Summe [m] M1 bis M4	91

1. Humuseli	ntrag H [mg	/d] - Sedim	ientkästen	SK			1. Kalksta	Ibeintrag K	[mg/d] - Se	edimentkas	len SK		
Meßinter-	1	2	3	4	10.000		Meßinter-	1	2	3	4		
vall MI	26.06 03.07.03	03.07 31.07.03	31.07 27.08.03	27.08 18.09.03	MW [mg] pro Kasten	Summe [mg] pro Kasten	vali Mi	26.06 03.07.03	03.07 31.07.03	31.07 27.08.03	27.08 18.09.03	MW [mg] pro Kasten	Summe [mg] pro Kasten
Tage	7	28	27	22	1.000		Tage	7	28	27	22		1.00
SK1	3,6	7,1	1,7	1,3	3,4	14	SK1	0,0	0,1	0,0	0,1	0,0	0
SK2	5,3	5,5	1,9	0,5	3,3	13	SK2	0,0	0,0	0,1	0,2	0,1	0
SK3	6,9	4,2	1,3	1,5	3,5	14	SK3	0,1	0,1	0,2	0,0	0,1	0
SK4	0,9	4,5	1,3	1,8	2,1	8	SK4	0,0	0,0	0,0	0,1	0,0	0
SK5	4,3	2,3	0,6	1,0	2,0	8	SK5	0,0	0,0	0,0	0,0	0,0	0
MW pro Intervall	4,2	4,7	1,3	1,2	Summe Tage	84	MW pro Intervall	0,03	0,05	0,07	0,08	Summe Tage	84
Summe pro Intervali	21	24	7	6	Summe [m] M1 bis M4	57	Summe pro Intervall	0,1	0,3	0,3	0,4	Summe [m] M1 bis M4	1

Staub aus Regenniederschlag - Sommer 2003

Zugspitzplatt / Wettersteingebirge Tägliche Eintragsraten [µg/d/cm²]

1. Gesamte	intrag G [µ	g/d/cm2] - 5	Sedimentka	isten SK		-	1. Silikatst	aubeintrag	S [µg/d/cm	2] - Sedimer	ntkästen SK	1944 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 -	
Meßinter-	1	2	3	4			Meßinter-	1	2	3	4		S
vall MI	26.06 03.07.03	03.07 31.07.03	31.07 27.08.03	27.08 18.09.03	MW [mg] pro Kasten	Summe [mg] pro Kasten	vall MI	26.06 03.07.03	03.07,- 31.07.03	31.07 27.08.03	27.08 18.09.03	MW [mg] pro Kasten	Summe [mg] pro Kasten
Tage	7	28	27	22	· · · · ·	11*	Tage	7	28	27	22		
SK1	15,3	20,5	7,6	5,5	12,2	49	SK1	9,7	9,3	5,0	3,3	6,8	27
SK2	19,2	16,0	5,7	3,2	11,0	44	SK2	11,1	7,4	2,8	2,0	5,8	23
SK3	28,3	17,7	5,0	5,3	14,1	56	SK3	17,5	11,1	2,8	3,0	8,6	34
SK4	6,2	15,5	5,4	7,7	8,7	35	SK4	4,9	8,5	3,4	4,8	5,4	22
SK5	19,9	16,9	4,0	5,7	11,6	46	SK5	13,3	13,3	3,0	4,2	8,4	34
MW pro Intervall	17,8	17,3	5,5	5,5	Summe Tage	84	MW pro Intervall	11,3	9,9	3,4	3,4	Summe Tage	84
Summe pro Intervall	89	87	28	27	Summe [m] M1 bis M4	231	Summe pro Intervall	56	50	17	17	Summe [m] M1 bis M4	140

1. Humusein	trag H [µg	/d/cm2] - Se	edimenika	sten SK			1. Kalkslau	Ibeinlrag K	[µg/d/cm ²	- Sedimenti	kästen SK		
Meßinter-	1	2	3	4	15.0175		Meßinter-	1	2	3	4		
vall MI	26.06 03.07.03	03.07 31.07.03	31.07 27.08.03	27.08 18.09.03	MW [mg] pro Kasten	Summe [mg] pro Kasten	vall MI	26.06 03.07.03	03.07 31.07.03	31.07 27.08.03	27.08 18.09.03	MW [mg] pro Kasten	Summe [mg] pro Kasten
Tage	7	28	27	22		11	Tage	7	28	27	22		1
SK1	5,5	11,0	2,6	2,0	5,3	21	SK1	0,0	0,2	0,0	0,1	0,1	0
SK2	8,2	8,6	2,9	0,8	5,1	20	SK2	0,0	0,1	0,1	0,4	0,1	1
SK3	10,6	6,5	1,9	2,4	5,4	21	SK3	0,2	0,1	0,3	0,0	0,2	1
SK4	1,3	6,9	2,0	2,8	3,3	13	SK4	0,0	0,1	0,0	0,1	0,0	0
SK5	6,6	3,6	0,9	1,5	3,2	13	SK5	0,0	0,0	0,1	0,0	0,0	0
MW pro Intervall	6,5	7,3	2,1	1,9	Summe Tage	84	MW pro Intervall	0,04	0,08	0,10	0,13	Summe Tage	84
Summe pro Intervall	32	37	10	10	Summe [m] M1 bis M4	69	Summe pro Intervall	0,2	0,4	0,5	0,6	Summe (m) M1 bis M4	2

Westl. Karwendelgrube / Karwendelgebirge

1) = bei Wind weggeweht

Eintrag	[mg]																					
1, Gesan	leintrag	G [mg] -	Sediment	käslen Sk	(-	-			1. Siikaisla	ubeintra	g S [mg]	- Sedime	ntkästen s	SK					
Meßinter-	1	2	3	4	5	6	7	8	9			1	2	3	4	5	6	7	8	9		
vall MI	30,05	14.06	20.06,-	02.07	09.07	30.07	17.08	26.08	04.09	MW (mat	Summe	30.05	14.06	20.08	02.07	09.07	30.07-	17.08	26.08	04,09, -	MW Imal	Summa (ma)
	14.06.03	20.06.03	02.07.03	09.07.03	30.07.03	17.06,0 3	26.08.03	04.09.03	17.09.03	pro Kasten	[mg] pro Kasten	14.06.03	20.06.03	02.07.03	09.07.03	30.07.03	17.08.03	26.08.0 3	04.09.03	17.09,03	pro Kasten	pro Kasten
Tage	15	6	12	1	21	18	10	9	13	12.2		15	6	12	7	21	18	10	9	13		
SK1	74	33	43	-33	156	85	70	31	89	68,2	614	55	23	28	23	68	55	43	25	74	43,8	394
SK2	387	183	88	0	129	66	67	55	26	111,2	1001	292	143	59	0	76	54	51	37	13	80,6	725
SK3	324	128	57	0	77	46	33	26	15	78,4	706	310	110	44	0	55	10	19	14	14	64,0	576
SK4	1	250	66	11	364	109	118	77	23	127,3	1018	· · · · · · · · · · · · · · · · · · ·	137	58	11	194	61	74	51	23	76,1	609
MW pro Intervall	261,7	148,5	63,5	11,0	181,5	76,5	72,0	47,3	38,3	Summe Tage	111	219,0	103,3	47,3	8,5	98,3	45,0	46,8	31,8	31,0	Summe Tage	111
Summe je Intervall	785	594	254	44	726	306	288	189	153	Summe M1bis M9	3339	657	413	189	34	393	180	187	127	124	Summe M1bis M9	2304

T. Humus	eintrag I	H (mg) = 2	Sedimenti	disten Sk								T. Kalkstau	ibeintrag	8 [mg] = i	Sequiment	Kaslen S	N					
Meßinter-	1	2	3	4	5	6	7	8	9			1	2	3	4	5	6	7	8	9		
vall MI	30.05,- 14.06.03	14.06 20.06.03	20.06 02.07.03	02.07 09.07.03	09.07 30.07.03	30.07 17.08.0 3	17.08 26.08.03	26.08 04.09.03	04.09 17.09.03	MW [mg] pro Kasten	Summe [mg] pro Kasten	30,05 14.06.03	14.06,- 20.06,03	20.06 02.07.03	02.07,- 09.07.03	09.07 30.07.03	30.07 17.08.03	17.08 26.08.0 3	26.08,- 04.09.03	04,09 17.09.03	MW [mg] pro Kasten	Summe (mg) pro Kasten
Tage	15	6	12	2 7	21	18	10	9	13		1.1.1	15	6	12	7	21	18	10	9	13		
SK1	19	10	14	4	88	30	27	6	15	23,7	213	0	0	2	18	0	0	0	0	0	2,3	21
SK2	88	39	28	s 0	51	12	16	18	0	28,0	252	7	1	1	0	2	0	0	0	13	2,6	24
SK3	14	18	13	0	22	36	14	12	1	14,4	130	0	0	0	0	0	0	0	0	0	0,0	0
SK4	1.4	148	8	0	169	48	44	25	0	55,0	440		0	0	0	1	0	0	1	0	0,3	2
MW pro Intervall	40,3	53,3	15,8	1,0	82,5	31,5	25,3	15,3	4,0	Summe Tage	111	2,3	0,1	0,9	4,6	0,8	0,0	0,0	0,3	3,3	Summe Tage	111
Summe je Interval	121	213	63	4	330	126	101	61	16	Summe M1bis M9	1035	7	1	3	18	3	0	0	1	13	Summe M1bis M9	46

Staub aus Regenniederschlag - Sommer 2003

SK4 MW pro Intervall Summe

Intervall

																					1111 1 101	
Westl,	Karwen	delgru	be / Ka	rwende	gebirge	3																
Tagesra	ten (mg	/d]	-			-																
1. Gesam	leintrag	G [mg/d]	- Sedime	intkästen	SK			-				1. Silikatsta	subeintra	g S [mg/d	- Sedim	entkäste	n SK	-				
Meßinter-	1	2	3	4	5	6	7	8	9			1	2	3	4	5	6	7	8	9		
vall MI	30.05 14.06.03	14,06,- 20.06.03	20.06	02.07 09.07.03	09.07 30.07.03	30.07 17.08.0 3	17.08 26.08.03	26.08 04.09.03	04.09 17.09.03	MW [mg] pro Kaslen	Summe [mg] pro Kasten	30.05 14.06.03	14.06 20.06.03	20.06 02.07.03	02.07 09.07.03	09.07 30.07,03	30.07 17.08.03	17.08 26.08.0 3	26.08 04.09.03	04.09 17.09.03	MW [mg] pro Kasten	Summe (mg) pro Kasten
Tage	15	6	12	1	21	18	10	9	13		100	15	6	12	7	21	18	10	9	13		
SK1 SK2	4,9 25,8	5,5 30,5	5 3,6 5 7,3	6 4,7 8 (7,4	4,7	7,0	3,4 6,1	6,8 2,0	5,4 9,8	48 88	3,7 19,5	3,8	2,3	3,3	3,2	3,1 3,0	43	2,8	5,7	3,6 7,2	32
SK3	21,6	21,3	4,8		3,7	2,8	3,3	2,9	1,2	6,8	61	20,7	18,3	3,1	0	2,8	0,6	1,8	1,0	1 20	5,0	50
SK4		41,7	5,5	1,6	17,3	6,1	11,8	8,6	1,8	11,8	94		22,8	4,8	1,6	9,2	3,4	7,4	5,7	1,8	7,1	57
MW pro Intervali	17,4	24,8	5,3	1,6	8,6	4,3	7,2	5,3	2,9	Summe Tage	111	14,6	17,2	3,9	1,2	4,7	2,5	4,7	3,5	2,4	Summe Tage	111
Summe je Intervall	52	99	21	(35	17	29	21	12	Summe M1bis M9	292	44	69	16	5	19	10	19	14	10	Summe M1bis M9	204
1 Hamus	ieinitäg H	mg/d]	- Sedimer	utrasten S	ň.				-	-		1 Kalkstau	peintrag	K [mg/d]	- Seame	ntkästen	SK.			-	-	
Meßinter-	11	2	3	4	5	6	7	8	9			1	2	3	4	5	6	7	8	9		1.0
vali Mi	30.05 14.06.03	14.06 20.06.03	20.08 3 02.07.03	02.07 09.07.03	09.07 30.07.03	30.07 17.08.0 3	17.08 26.08.03	26.08 04.09.03	04.09 17.09.03	MW [mg] pro Kasten	Summe [mg] pro Kasten	30.05 14.06.03	14.06 20.06.03	20.06 02.07.03	02.07 09.07.03	09.07 30.07.03	30.07,- 17.08.03	17.08 26.08.0 3	26.08 04.09.03	04.09 17.09.03	MW [mg] pro Kasten	Summe [mg] pro Kasten
Tagé	15	6	12	2 7	21	18	10	9	13	1		15	6	12	1 7	2	18	10	1	13		
SK1 SK2	1,3	1,1	1,2	2 0,1	4,2 2,4	1,7	2,1	0,7	1,2	1,7 2,4	15	0,0 0,5	0,0	0,2	2,6	0,0	0,0	0,0	0,0	0,0	0 0,3	3
SK3	0,9	3,0	1	0	1,0	2,0	1,4	1,3	0,1	1,2	11	0,0	0,0	0,0	0	0,0	0,0	0,0	0,0	0,0	0,0	0

Nr. 27

0

111

111

Westl. Karwendelgrube / Karwendelgebirge

55

2,0

4,2 13,7

12

MW pro Intervall

Summe

Intervall

Tagnene	- Linua	garaten	[Hyluic	n1	01/	_					-	F. COLLARS	10.1.4.	01.00	100 B 0	18-22-246-2	100 012	_				
L Gesan	itemtrag (G [hd/m	am" - Sec	limentkas	len SK		-	-		_		T. Silikatsta	subeintra	0 2 hd/g	/cm-1-Si	edimentika	isten SK					-
Meßinter-	1	2	3	4	5	6	7	8	9		1.1.1	1	2	3	4	5	6	7	8	9		100 C
vali MI	30.05 14.06.03	14.06 20.06.03	20.06 02.07.03	02.07 09.07.03	09.07 - 30,07.03	30.07 17.08.0 3	17.08 25.08.03	26.08 04.09.03	04.09 17.09.03	MW [mg] pro Kasten	Summa [mg] pro Kasten	30.05 14.05.03	14.06 20.06.03	20.05 02.07.03	02.07 09.07.03	09.07 30.07.03	30.07 17.08.03	17.08 26.08.0 3	26.08 04.09.03	04.09 17.09.01	MW [mg] pro Kasten	Summe (mg) pro Kasten
Tago	15	6	12	1	21	18	10	9	13			15	6	12	7	21	18	10	9	13		
SK1 SK2 SK3 SK4	7,6 39,9 33,4	8,5 47,2 33,0	5,5 11,4 7,4	7,3 0 0	11,5 9,5 5,7 26,8	7,3 5,7 4,0	10,8 10,4 5,1	5,3 9,5 4,5	10,6 3,1 1,8	8,3 15,2 10,5	75 137 95	5,7 30,1 32,0	5,9 36,9 28,4 35,3	3,6 7,6 5,7	5,1 0 0	5,0 5,6 4,1	4,7 4,6 0,9	6,7 7,9 2,9	4,3 6,4 2,4	8,1 1,5 1,7	5,5 11,2 8,7	50 10 71 80
MW pro Intervali	27,0	38,3	8,2	2,4	13,4	6,6	11,1	8,1	4,6	Summe Tage	111	22,6	26,6	6,1	1,9	7,2	3,9	7,2	5,5	3,7	Summe Tage	11
Summe je Intervall	81	153	33	10	54	26	45	33	18	Summe Milblis M9	452	68	107	24	8	29	15	29	22	45	Summe M1bis M9	31
t Humas	entrag P	1 ug/d/c	m" -Sid	menthaet	m SK	-		-		-	-	1. Kalkstau	deintrag	K [µg/d/c	mª - Sed	mentkás	ien SK	-		-		
Meßinter	1 1	2	3	4	5	6	7	8	9	[1	2	1 3	1 4	5	5	7	8	9		
vali Mi	30.05 14.06.03	14.06 20.06.03	20.06 02.07.03	02.07 09.07.03	09.07 30.07.03	30.07 17.08,0 3	17.08 26.08.03	26.08 04,09.03	04.09 17.09.03	MW [mg] pro Kasten	Summe [mg] pro Kasten	30.05 14.06.03	14.06 20.06,03	20.06 02.07.03	02.07 09.07.03	09.07 30.07.03	30.07 17.08.03	17.08 26.08.0 3	26,08 04.09.03	04.09 17.09.03	MW (mg) pro Kastan	Summe (mg) pro Kasten
Tage	15	6	12	7	21	18	10	9	13	1		15	6	12	7	21	18	10	9	12		
SK1	2,0	2,6	1,8	0,8	6,5	2,6	4,2	1,0	1,8	2,6	23	0,0	0,0	0,3	4,0	0,0	0,0	0,0	0,0	0,0	0,5	
SK2 SK3	9,1 1,4	10,1	3,6		3,8 1,8	1,0 3,1	2,5	3,1	0,0	3,7 1,9	33 17	0,7	0,1	0,1	0	0,1	0,0	0,0	0,0),5 0,0	0,3 0,0	1 - 3
SK4	a = 0	37,7	1,0	0,0	12,5	4,1	6,8	4,3	0,0	8,3	66		0,0	0,0	0,0	0,1	0,0	0,0	0,2	0,0	0,0	

0,2 0,03

0,7 0,1

111

140

0,06

0,0 0,0 0,04

0,0

0,0

0,2

0,4 Summe Tage

1,5 Summe M1bis M9

0,1

0,4 4,0 0,2

1,0

Staub aus Regenniederschlag - Sommer 2003

0,2 6,1 2,7

11 16

24

3,9

0,5

2

2,6

10

Summe

Tage Summe M1bis M9

Reiteralpe	/ Bercht	esgadene	er Alpen]								Nr. 29		
Eintrag [mg	g]		2.24										1.11		
1. Gesamteir	ntrag G (mg	- Sedimen	Ikäslen SK	-				1 Silikatstau	beintrag S	mg] - Sedir	nenlkäster	SK			
Meßintervall	1	2	3	4	5		1.1.1.	Meßintervall	1	2	3	4	5		
	12.06 26.06.03	26.06 08.07.03	08.07 07.08.03	07,08 16,08.03	16.08 26.08.03	MW [mg] pro Kasten	Summe [mg] pro Kasten		12.06 26.06.03	26.06 08.07.03	08.07 07.08.03	07.08 16.08.03	16.08 26.08.03	MW [mg] pro Kasten	Summe [mg] pro Kasten
Tage	14	11	30	15	10		(******	Tage	14	11	30	15	10		1
SK1 SK2 SK3 SK4	88 33 116 12	118 75 120 100	87 57 95 60	20 18 16 24	60 30 95 42	74,6 42,6 88,4 47,6	373 213 442 238	SK1 SK2 SK3 SK4	70 16 56 7	95 75 98 83	36 26 54 34	10 9 8 12	36 11 82 35	49,4 27,4 59,6 34,2	247 137 298 171
MW pro Intervall	62,3	103,3	74,8	19,5	56,8	Summe Tage	80	MW pro Intervall	37,3	87,8	37,5	9,8	41,0	Summe Tage	80
Summe pro Intervall	249	413	299	78	227	Summe [m] Gesamt	1266	Summe pro Intervall	149	351	150	39	164	Summe (m) Gesamt	853
1. Humusein	trag H [mg]	- Sediment	kasten SK	-	-		-	1. Kalkstaube	eintrag K In	ig] - Sedims	enlkäslen i	SK			
Meßintervall MI	1	2	3	4	5	MALIMA	Cummin	Meßintervall MI	1	2	3	4	5	MM Imal	Fumme
	12.06 26.06.03	26.06 08.07.03	08.07 07.08.03	07.08 16.08.03	16.08 26.08.03	pro Kasten	[mg] pro Kasten		12.06 26.06.03	26.06 08.07.03	08.07 07.08.03	07.08 16.08.03	16.08 26.08.03	pro Kasten	[mg] pro Kasten
Tage	14	11	30	15	10			Tage	14	11	30	15	10	· · · · · ·	
SK1 SK2 SK3	18 15 59	22 0 20	50 31 41	10 9 7	22 13 13	24,4 13,6 28,0	122 68 140	SK1 SK2 SK3	021	1 0 2	1000	0001	2 6 0	0,8 1,6 0,8	4 8 4
MW pro Intervall	24,3	14,8	36,8	9,5	14,3	13,6 Summe Tage	80	MW pro Intervall	0,8	0,8	0,8	0,3	2,3	0,6 Summe Tage	80
Summe pro Intervall	97	59	147	38	57	Summe (m) Gesaml	398	Summe pro Intervall	3	3	3	1	9	Summe (m) Gesamt	19

Reiteralpe / Berchtesgadener Alpen Tagesraten [mg/d]

Nr. 30

1. Gesamlein	Irag G [mg	/d] - Sedime	entkästen St	K				1. Silikatstau	beintrag S	mg/d] - Sec	limentkäst	en SK	-		
Meßintervall MI	1	2	3	4	5	Allera	0	Meßintervall MI	1	2	3	4	5	Laure 1	
	12.06 26.06.03	26.06 08.07.03	08.07 07.08.03	07.08 16.08.03	16.08 26.08.03	pro Kasten	[mg] pro Kasten		12.06 26.06.03	26.06 08.07.03	08.07 07.08.03	07.08 16.08.03	16.08 26.08.03	pro Kasten	[mg] pro Kasten
Tage	14	11	30	15	10			Tage	14	11	30	15	10		
SK1	6,3	10,7	2,9	1,3	6,0	5,4	27	SK1	5,0	8,6	1,2	0,7	3,6	3,8	19
SK2	2,4	6,8	1,9	1,2	3,0	3,1	15	SK2	1,1	6,8	0,9	0,6	1,1	2,1	11
SK3	8,3	10,9	3,2	1,1	9,5	6,6	33	SK3	4,0	8,9	1,8	0,5	8,2	4,7	23
SK4	0,9	9,1	2,0	1,6	4,2	3,5	18	SK4	0,5	7,5	1,1	0,8	3,5	2,7	13
MW pro Intervall	4,4	9,4	2,5	1,3	5,7	Summe Tage	80	MW pro Intervall	2,7	8,0	1,3	0,7	4,1	Summe Tage	80
Summe pro Intervall	18	38	10	5	23	Summe (m) Gesamt	93	Summe pro Intervall	11	32	5	3	16	Summe [m] Gesamt	67
1. Humusemi	rag H (mg/c	1] - Sedimer	tkasten SK			-	-	1. Kalkstaube	eintrag K (m	ig/d] - Sedit	nentkäster	SK		-	_
Meßintervall MI	t	2	3	4	5	Add from T		Meßintervall MI	1	2	3	4	5	A dial from t	
	12.06 26.06.03	26.06 08.07.03	08.07 07,08.03	07.08 16.08.03	16.08 26.08.03	pro Kasten	[mg] pro Kasten		12.06 26.06.03	26.06 08.07.03	08.07 07.08.03	07.08 16.08.03	16.08 26.08.03	pro Kasten	[mg] pro Kasten
Tage	14	11	30	15	10		1	Tage	14	11	30	15	10		
SK1	1,3	2,0	1,7	0,7	2,2	1,6	8	SK1	0,0	0,1	0,0	0,0	0,2	0,1	0
SK2	1,1	0,0	1,0	0,6	1,3	0,8	4	SK2	0,1	0,0	0,0	0,0	0,6	0,1	1
SK3	4,2	1,8	1,4	0,5	1,3	1,8	9	SK3	0,1	0,2	0,0	0,1	0,0	0,1	0
SK4	0,4	1,5	0,8	0,8	0,9	0,9	4	SK4	0,0	0,0	0,1	0,0	0,1	0,0	0
MW pro Intervall	1,7	1,3	1,2	0,6	1,4	Summe Tage	80	MW pro Intervali	0,1	0,1	0,0	0,0	0,2	Summe Tage	80
Summe pro Intervall	7	5	5	3	6	Summe [m] Gesamt	25	Summe pro Intervali	0,2	0,3	0,1	0,1	0,9	Summe [m] Gesami	2

Staub aus Regenniederschlag - Sommer 2003

Reiteralpe / Berchtesgadener Alpen Tägliche Eintragsraten [µg/d/cm²]

1. Gesamteir	Irag G [µg/	d/cm ²] - Se	dimentkäste	en SK				1 Silikatstau	beintrag S	µg/d/cm ²] -	Sediment	ästen SK			
Meßintervall MI	1	2	3	4	5	104/5-1		Meßintervall MI	t	2	3	4	5	ANA/ Const	Dumme
	12.06 26.06.03	26.06 08.07.03	08.07 07.08.03	07.08 16.08.03	16.08 26.08.03	pro Kasten	[mg] pro Kasten		12.06 26.06.03	26.06 08.07.03	08.07 07.08.03	07.08 16.08.03	16.08 26.08.03	pro Kasten	[mg] pro Kasten
Tage	14	11	30	15	10			Tage	14	11	30	15	10		
SK1	9,7	16,6	4,5	2,1	9,3	8,4	42	SK1	7,7	13,4	1,9	1,0	5,6	5,9	30
SK2	3,6	10,6	2,9	1,9	4,6	4,7	24	SK2	1,8	10,6	1,3	0,9	1,7	3,3	16
SK3	12,8	16,9	4,9	1,7	14,7	10,2	51	SK3	6,2	13,8	2,8	0,8	12,7	7,3	36
SK4	1.3	14,1	3,1	2,5	6,5	5,5	27	SK4	0,8	11,7	1,8	1,2	5,4	4,2	21
MW pro Intervall	6,9	14,5	3,9	2,0	8,8	Summe Tage	80	MW pro Intervall	4,1	12,3	1,9	1,0	6,3	Summe Tage	80
Summe pro Intervall	28	58	15	8	35	Summe [m] M1bis M5	144	Summe pro Intervall	16	49	8	4	25	Summe [m] M1bis M5	103

1, Humusein	trag H [µg/c	i/cm*] - Sed	limentkästei	n SK	-	-		1. Kalkstaube	eintrag K [L	ig/d/cm2 - S	edimentkä	sten SK		-	
Meßintervall MI	1	2	3	4	5	NBU Const		Meßintervall MI	1	2	3	4	5	MA/ Imal	Cummo
	12.06 26.06.03	26.06 08.07.03	08.07 07.08.03	07.08 16.08.03	16.08 26.08.03	pro Kasten	[mg] pro Kasten		12.06 26.06.03	26.06 08.07.03	08.07 07.08.03	07.08 16.08.03	16.08 26.08.03	pro Kasten	[mg] pro Kasten
Tage	14	11	30	15	10			Tage	14	11	30	15	10	1. The second se	
SK1	2,0	3,1	2,6	1,0	3,4	2,4	12	SK1	0,0	0,1	0,1	0,0	0,3	0,1	1
SK2	1,7	0,0	1,6	0,9	2,0	1,2	6	SK2	0,2	0,0	0,0	0,0	0,9	0,2	1
SK3	6,5	2,8	2,1	0,7	2,0	2,8	14	SK3	0,1	0,3	0,0	0,1	0,0	0,1	0
SK4	0,6	2,4	1,3	1,2	1,4	1,4	7	SK4	0,0	0,0	0,1	0,0	0,2	0,1	0
MW pro Intervall	2,7	2,1	1,9	1,0	2,2	Summe Tage	80	MW pro Intervali	0,08	0,11	0,04	0,03	0,35	Summe Tage	80
Summe pro Intervall	11	8	8	4	9	Summe (m) M1bis M5	39	Summe pro Intervall	0,3	0,4	0,2	0,1	1,4	Summe (m] M1bis M5	2

In der Reihe der Forschungsberichte sind erschienen:

Nr. 1	G. Enders Theoretische Topoklimatologie	Nr. 28	B. Müller, W. Berberich, A. David Schalenwild
Nr. 2	R. Bochter, W. Neuerburg, W. Zech Humus und Humusschwund im Gebirge	Nr. 29	J. Köppel Beitrag der Vegetation zum Wasserhaushalt
Nr. 3	Herausgeber Nationalparkverwaltung Zur Situation der Greifvögel in den Alpen	Nr. 30	H. Zierl et al. Die Wallfahrt über das Steinerne Meer
Nr. 4	G. Enders Kartenteil: Theoretische Topoklimatologie	Nr. 31	P. Pechacek Spechte im Nationalpark Berchtesgaden
Nr. 5	O. Siebeck Der Königssee – Eine limnologische Projektstudie	Nr. 32	Chr. Dommermuth Beschleunigte Massenabtragung
INE. D	Böden naturnaher Bergwaldstandorte auf carbonatreichen Substraten	Nr. 33	Im Jennergebiet R. Bögel Untersuchungen zur Elughiologie und
Nr. 7	Herausgeber Nationalparkverwaltung Der Funtensee		Habitatinutzung von Gänsegeiern
Nr. 8	H. Schmid-Heckel Zur Kenntnis der Pilze in den Nördlichen Kalkalpen	Nr. 34	A. Schuster Singvögel im Biosphärenreservat Berchtesgaden
Nr. 9	R. Boller Diplopoden als Streuzersetzer in einem Lärchenwald	Nr. 35	M. Höper Moose – Arten, Bioindikation, Ökologie
Nr. 10	E. Langenscheidt Höhlen und ihre Sedimente in den	Nr. 36	T. Barthelmeß Die saisonale Planktonsukzession im Königssee
Nr. 11	Berchtesgadener Alpen Herausgeber Nationalparkverwaltung	Nr. 37	W. Lippert, S. Springer, H. Wunder Die Farn- und Blütenpflanzen des Nationalparks
Nr. 12	Das Bärenseminar H. Knott	Nr. 38	G. Gödde Die Holzbringung um den Königssee
Nr. 13	Geschichte der Salinenwälder von Berchtesgaden A. Manghabati	Nr. 39	A. Stahr Bodenkundliche Aspekte der Blaikenbildung
	Einfluß des Tourismus auf die Hochgebirgslandschaft		auf Almen
NF. 14	A. Spiegel-Scrinidt Alte Forschungs- und Reiseberichte aus dem Berchtesgadener Land	Nr. 40	H. Braun Die Geologie des Hohen Gölls
Nr. 15	H. Schmid-Heckel Pilze in den Berchtesgadener Alpen	Nr. 41	F. Gloßner, R. Türk Die Flechtengesellschaften im Nationalpark Berchtesgaden und dessen Vorfeld
Nr. 16	L. Spandau Angewandte Ökosystemforschung im Nationalpark Berchtesgaden	Nr. 42	R. Türk, H. Wunder Die Flechten des Nationalparks Berchtesgaden und angrenzender Gebiete
Nr. 17	W. Berberich Das Raum-Zeit-System des Rotfuchses	Nr. 43	V. Konnert, J. Siegrist Waldentwicklung im Nationalpark Berchtesgaden
Nr. 18	U. Mäck, R. Bögel Untersuchungen zur Ethologie und Raumnutzung von Gänse- und Bartgeier	Nr. 44	von 1983 bis 1997 S. Schmidtlein
Nr. 19	B. Dittrich, U. Hermsdorf Biomonitoring in Waldökosystemen	14.35	auf Landschaftsebene
Nr. 20	F. Kral, H. Rall Wälder – Geschichte, Zustand, Planung	Nr. 45	U. Brendel, R. Eberhardt, K. Wiesmann-Eberhardt, W. d'Oleire-Oltmanns Der Leitfaden zum Schutz des Steinadlers
Nr. 21	M. Klein, RD. Negele, E. Leuner, E. Bohl, R. Leyerer Fischbiologie des Königssees: Fischereibiologie und Parasitologie	Nr. 46	in den Alpen Herausgeber Nationalparkverwaltung Forschung im Nationalpark Berchtesgaden
Nr. 22	W. Traunspurger Fischbiologie des Königssees: Nahrungsangebot und Nahrungswahl, Bd. I	Nr. 47	von 1978 bis 2001 Th. Rettelbach Die Antagonisten des Buchdruckers
Nr. 23	R. Gerstmeier Fischbiologie des Königssees:	Nr. 48	im Nationalpark Berchtesgaden P. Pechacek, W. d'Oleire-Oltmanns
Nr. 24	W. Hecht, M. Förster, F. Pirchner	Nr. 49	International Woodpecker Symposium
	R. Hoffmann, P. Scheinert, H. Rettenbeck Fischbiologie des Königssees: Ökologisch-genetische Untersuchungen am	Nr. 50	Standortkarte Nationalpark Berchtesgaden K. Fischer
NI- 05	Seesaibling und Gesundheitsstatus der Fische	A14 54	Geomorphologie der Berchtesgadener Alpen
Nr. 25	Klimatologie des Alpenparks	INE D1	Quellen im Nationalpark Berchtesgaden
Nr. 26	K. Rösch Einfluß der Beweidung auf die Vegetation des Bergwaldes	Nr. 52	Thomas Kudernatsch Auswirkungen des Klimawandels auf alpine Pflanzen- gesellschaften im Nationalpark Berchtesgaden
Nr. 27	H. Remmert, P. G. Rey, W. R. Siegfried, W. Scherzinger, S. Klaus Kleinstmögliche Populationen bei Tieren	Nr. 53	U. Strasser Proceedings Alpine*Snow*Workshop

Zu beziehen über die Nationalparkverwaltung Berchtesgaden, Doktorberg 6, D-83471 Berchtesgaden

